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Abstract

Can geo-tracking data allow firms to better predict consumers’ future behaviors?
If so, how might potential privacy regulations limit the usefulness of geo-tracking data
for prediction? Using data with over 120 million driving instances for 38,980 app
users, and their visits to 422 restaurants in Texas, the authors quantify the extent to
which geo-tracking data allow restaurants to better predict the number of visits one
week ahead. They show that geo-tracking data increase the performance of prediction
models by 14.77% relative to models that use demographic, behavioral, and static
home location information. Simulation exercises that limit what data are tracked and
in what form, where, and how frequently these data are tracked show a decrease in the
predictive performance of models that use geo-tracking data. However, the decrease
varies by the type of restriction; regulations that restrict what data are geo-tracked (i.e.,
summaries of driving behaviors) and in what form (i.e., synthetic data generated with
nearby users’ data) result in the largest decreases in predictive performance (16.24%
and 8.09%), while regulations that restrict where users are geo-tracked (i.e., within a
few miles of a business location) and how frequently (i.e., at longer intervals) result in
smaller decreases (3.56% and .77-2.46%, depending on the frequency). Importantly,
models with restricted geo-tracking generally outperform models that do not use any
geo-tracking information. These findings can assist managers and policymakers in
assessing the risks and benefits associated with the use of geo-tracking data.
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INTRODUCTION

In recent years, most firms have become capable of tracking consumers’ locations and

movement patterns through their own or third-party mobile apps (Valentine-De et al. 2018).

Firms use geo-tracking data to predict consumers’ future actions and make strategic decisions

(Sun et al. 2022). Many restaurants, for example, use geo-tracking data to predict future

visits to their locations to improve their service and create local promotions (Dean 2023).

Burger King implemented a well-known application of geo-tracking when it offered the

Whopper burger for one cent to customers who ordered it through its app while located

within 600 meters of a McDonald’s (Clifford 2018).1

Despite the potential usefulness of geo-tracking data for firms, these data reveal sensitive

personal information about consumers (Bleier, Goldfarb, and Tucker 2020; Choi, Jerath, and

Sarvary 2023; Goldfarb and Tucker 2012). For example, Canadian coffee chain Tim Hortons

evoked a “mass invasion of privacy” by geo-tracking its app users round-the-clock (Austen

2022). As a consequence, the use of geo-tracking data by firms has attracted legal and

regulatory action (Binns et al. 2018; Tau 2023). Data broker Kochava was sued by the Federal

Trade Commission (FTC) for selling consumers’ geolocation data that made it possible to

identify their visits to sensitive locations (FTC 2022).2 Recent privacy regulations, such as

the California Privacy Rights Act (CPRA), explicitly recognize consumer location data as

personal and sensitive information. Taking these concerns into account, researchers have

proposed data obfuscation approaches to make such data privacy-preserving while retaining

their usefulness for firms (Macha et al. 2023).

Though geo-tracking has attracted the attention of consumers, firms, regulators, and

researchers, it is not clear to what extent geo-tracking data allow firms to better predict future

outcomes and how privacy regulations impact the usefulness of these data. In this context,

our research addresses two objectives. First, we examine the extent to which geo-tracking

1Many third-party firms, such as Radar and Bluedot enable businesses to build their geo-tracking capabilities

and constitute the growing multi-billion dollar location data ecosystem (Macha et al. 2023)
2FTC also charged data vendors InMarket and X-Mode for selling consumers’ raw location data (FTC 2024).
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data are useful when predicting app users’ visits to a business location one week ahead,

relative to not using any consumer data and using only demographic, behavioral, and static

home location information. Second, we examine how restricting geo-tracking data under

potential privacy regulations impacts the usefulness of these data for prediction.

To address our first research question, we identify an application of geo-tracking data

in the restaurant industry. While the potential usefulness of geo-tracking data depends

on specific business objectives, our application focuses on predicting the number of visits

to a restaurant one week ahead using the previous week’s geo-tracking data as input.3

Our empirical context is ideal for this research because many restaurants have access to

geo-tracking data through their own or third-party apps, and are interested in predicting

the number of visits they expect each week (Oblander and McCarthy 2023). Improving

the predictions of weekly visits can allow restaurants to prevent under- or over-committing

resources, such as staff and inventory.

To address our second research question, we then examine how restricting geo-tracking

data under potential privacy regulations impacts the predictive performance of models

that use these data. Specifically, we simulate four types of regulations that restrict what

geo-tracking data are tracked and in what form, where, and how frequently these data are

tracked. We motivate and develop these simulations based on privacy regulations, industry

practices, and recommendations from the data obfuscation literature.4

In our research, we use proprietary data from a Texas-based app that tracks individual-level

driving. The purpose of the app is to encourage safe driving. To do this, the app rewards

points for driving safely without using one’s phone. The points can be redeemed as discounts

at business locations, which are primarily restaurants that the app has partnered with. The

app has over 200,000 users. For our research, we can access data from a random sample

of 38,980 app users, including over 120 million driving instances for 60 weeks in 2018-2019.

3We identify the prediction of weekly visits as a relevant objective for restaurant managers through a set of

structured interviews. See Web Appendix A for a summary of interview responses.
4We verify that consumers perceive our simulation exercises to be privacy-preserving by conducting a survey

about their perceptions (Jerath and Miller 2024; Lin and Strulov-Shlain 2023). See Web Appendix B for details.
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We focus on visits to 422 standalone restaurants in 40 cities in Texas where the app was

present during this time. While we are limited to a subset of restaurants, our sample is

representative and includes chains like McDonald’s and independent stores like Ozona Grill.

Our empirical approach exploits the detailed trip-level information for each user to extract

features that characterize users’ driving trajectories and restaurant visits. We then aggregate

the data to the restaurant-week level. We use these data to train and evaluate a machine

learning (ML) model at the restaurant-week level and then predict the total number of visits

from app users one week ahead. We quantify our model performance using the out-of-sample

root mean squared error (RMSE). We also report the results from alternative models at the

restaurant level and for alternative metrics, such as the mean absolute error (MAE).

Our analysis shows that geo-tracking data improve the predictive performance of our

models by 14.77% relative to models that use demographic, behavioral, and static home

location information, and by 22.27% relative to models without any consumer data (i.e.,

only restaurant and time-related information). We also find that using geo-tracking data

reduces the likelihood of both over-predicting and under-predicting future visits, which may

allow restaurants to reduce the likelihood of both wasting supplies and staff hours (because

of over-prediction) and of impacting customers’ experience (because of under-prediction).

After quantifying the usefulness of geo-tracking data for prediction, we turn to our

simulations of privacy regulations. Not surprisingly, we find that all forms of restrictions

on geo-tracking data reduce their predictive value, though the extent of the decrease varies

significantly across the simulations. Among our simulations, we find that restricting what

data are geo-tracked (i.e., summaries of driving behaviors) and in what form (i.e., synthetic

data based on nearby users) results in the largest decreases in predictive performance (16.24%

and 8.09%), while restricting where users are geo-tracked (i.e., within a few miles of a business

location) and how frequently (i.e., at longer intervals) results in smaller decreases (3.56% and

.77-2.46%, depending on the frequency). Importantly, models with restricted geo-tracking

generally outperform models that do not use any geo-tracking data.
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Our research contributes to the growing literature on the value of consumer data for

firms and to the literature on privacy regulations and data governance. First, the existing

work on the value of data primarily focuses on the value of online data rather than offline

geo-tracking data (e.g., Berman and Israeli 2022; Korganbekova and Zuber 2023; Rafieian

and Yoganarasimhan 2021; Wernerfelt et al. 2022; Yoganarasimhan 2020). In one exception

that is closest to our research, Sun et al. (2022) use omnichannel data, including data

on consumers’ offline visits for predicting each consumer’s online activity. In contrast, we

focus on predicting offline visits using complete geo-tracking data and on quantifying the

implications of restricting geo-tracking under potential privacy regulations. Second, the

research on privacy in marketing examines the impact of regulations for online firms (e.g.,

Goldberg, Johnson, and Shriver 2024; Johnson et al. 2023; Johnson, Shriver, and Goldberg

2023; Miller and Skiera 2023; Peukert et al. 2022, Zhao, Yildirim, and Chintagunta 2021),

consumer perceptions of privacy (e.g., Jerath and Miller 2024; Lin and Strulov-Shlain 2023),

and data obfuscation schemes (e.g., Li et al. 2023; Macha et al. 2023; Tian, Turjeman, and

Levy 2023). We adapt recommendations from this literature for offline geo-tracking data

in our simulations. In this way, our research extends these papers and the ongoing policy

debate about the governance of consumers’ geo-tracking data (e.g., FTC 2024; Tau 2023).

Our research has several implications for firms and policymakers. First, we show that

using geo-tracking data can improve a firm’s ability to predict weekly visits by reducing both

over- and under-prediction of visits. Based on their context and the costs associated with

over- and under-predicting, firms can evaluate their decision to collect and use geo-tracking

data. Second, we propose practical ways in which firms can protect consumers’ geo-tracking

data. Third, we identify ways of restricting data that still allow firms to get predictive value

from them. Specifically, we show that firms can restrict how often and where they geo-track

consumers with relatively little loss in predictive value compared with restricting what data

and in what form data are tracked. Finally, our findings from the simulation exercises can

allow policymakers to assess predictive losses from various types of regulatory simulations.
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RELATED LITERATURE

Our research relates to two streams of literature on the value of consumer data for firms

and on privacy regulations and data obfuscation schemes for data collection and use.

Value of Consumer Data for Firms

Research on the value of data quantifies how different types of consumer data contribute

to marketing outcomes of interest in various settings and applications. Historically, the

marketing literature has documented the usefulness of consumers’ purchase histories relative

to their demographic data for designing targeted pricing strategies (e.g., Acquisti and Varian

2005; Rossi, McCulloch, and Allenby 1996). With the growth in digital and mobile technologies,

the sources and types of consumer data available to firms have expanded rapidly (Lamberton

and Stephen 2016; Varga et al. 2024). However, most research in this domain focuses on

consumers’ online data and not their offline trajectories (e.g., Berman and Israeli 2022;

Wernerfelt et al. 2022; Yoganarasimhan 2020).

The paper that comes closest to our research is Sun et al. (2022). Their research quantifies

the usefulness of both online and offline data for predicting each consumer’s online actions

i.e., their likelihood of visiting, considering a purchase, and purchasing at multiple websites

two weeks ahead. In their work, Sun et al. (2022) use data on past online and offline

trajectories and show that omnichannel predictions outperform single-channel ones by 7.38%.

In contrast, we focus on predicting the total visits by app users to a retail location each week.

We also examine how the accuracy of these predictions is impacted by privacy-preserving

restrictions imposed on the data that firms can use. Such an inquiry is important for physical

retail locations that are interested in predicting weekly visits, but that may be subject to

privacy regulations that restrict data tracking.

Overall, relative to the literature on the value of data, our research focuses on quantifying

the predictive value of geo-tracking data beyond traditional metrics like demographics,
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behavioral, and static location information, and evaluating how this predictive value might

change under potential privacy restrictions imposed on geo-tracking data.

Data Governance, Data Obfuscation, and Privacy

The research on data governance, data obfuscation, and privacy examines regulations

and proposes restrictions that can impact how firms use customer data (e.g., Johnson et al.

2023; Macha et al. 2023). We broadly categorize these restrictions into the following types:

Restricting what data are tracked and in what form, where, and how frequently. Table 1

summarizes these restrictions with motivating examples and their application to geo-tracking.

Table 1: Overview of Privacy Restrictions and their Related Geo-Tracking Simulations

Type of restriction Motivation Potential geo-tracking simulation Example research

What user data are
tracked

GDPR protects user data that
contain personally identifiable
information. Google’s Sandbox
technology proposes
anonymizing user browsing data
within the Chrome browser
instead of collecting raw
browsing data using cookies.

User-level summarization:
Use summaries of driving
behaviors extracted from
geo-tracking data.

Johnson,
Shriver, and
Goldberg
(2023); Miller
and Skiera
(2023)

In what form data
are tracked

The data obfuscation literature
proposes anonymizing user data
to prevent re-identification, e.g.,
not using uniquely identifying
information, adding noise to the
data while preserving its value.

Synthetic data generation:
Replace the user’s data
with nearby users’ (i.e.,
k -nearest neighbors’) data.

Li et al.
(2023); Macha
et al. (2023)

Where users are
tracked

Google allows ad targeting
depending on a country’s laws.
Many data vendors only sell
consumer data tracked within
specific geofences.

Geographical restrictions:
Geo-track users only if
they were within certain
distances of a location
(e.g., one mile).

Danaher et al.
(2015); Dubé
et al. (2017)

How frequently
users are tracked

Regulatory actions discourage
the sale of consumers’ raw
location data streams and could
deter firms from high-frequency
tracking. Firms may elect to
track lower-frequency data or
data at only static locations to
optimize storage costs.

Frequency restrictions:
Geo-track trips at lower
frequency intervals, at the
start and end points of a
trip, or for a randomly
selected trip per week
instead of constantly
tracking all trips.

Kim, Bradlow,
and Iyengar
(2022);
Trusov, Ma,
and Jamal
(2016)

Notes: GDPR = General Data Protection Regulation. In Web Appendix B, we report consumer
surveys to verify that our geo-tracking simulations are perceived as privacy-preserving.
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What user data are tracked. Most privacy regulations, such as the California Privacy

Rights Act (CPRA), consider geo-tracking data as sensitive personal data. One way in

which privacy regulations restrict geo-tracking is to completely ban any form of location

tracking (Tau 2023). In some cases, regulatory action also prohibits selling consumers’

sensitive location data (FTC 2024). By comparing the predictive performance of models

with geo-tracking data and those without any consumer data (i.e., only restaurant and

time-related information) and without any geo-tracking data (i.e., only customer demographics,

behavioral information, and static location), our research addresses this possibility.

In practice, however, a complete ban is less likely. Instead, regulations typically restrict

what user data can be tracked. For example, the General Data Protection Regulation

(GDPR) requires anonymizing personally identifiable information (PII) about users (Wang,

Jiang, and Yang 2023), which impacts digital firms, publishers, and web technology vendors

(e.g., Johnson, Shriver, and Goldberg 2023; Miller and Skiera 2023). Similarly, Google’s

Topics API in its Privacy Sandbox hides the specific sites users visit and, instead, infers

broad interest-based categories to serve relevant ads.5 Individual-level data generally perform

better for targeting advertisements to consumers relative to aggregate data (Danaher 2023).

As such, data brokers commonly use algorithms to create individual user profiles by combining

data from multiple sources (Lin and Misra 2022; Neumann, Tucker, and Whitfield 2021; Yan,

Miller, and Skiera 2022).6

One way to make geo-tracking data privacy-safe is user-level summarization, i.e., to

extract features from geo-tracking data that describe users’ driving behaviors without recording

latitude-longitude coordinates or sensitive home location data. We address this possibility

in our counterfactual on user-level summarization.

In what form data are tracked. Since individual-level geo-tracking data pose privacy risks

by revealing exact home locations and trajectories, extant literature has proposed location

privacy-preservation mechanisms for data obfuscation (Jiang et al. 2021). These mechanisms

5See, for example, Google’s policy “Topics: Relevant ads without cookies”. Accessed on March 25th, 2024.
6In practice, some firms (e.g., Bridg) create privacy-safe profiles for retail media networks to reach their audience.
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broadly seek to change the form in which data are tracked, e.g., by adding noise or dropping

data, in order to preserve consumer privacy while maintaining the usefulness of the data.

Macha et al. (2023), for example, quantify the risk that from a set of trajectories, a private

feature, such as home location, may be identified. Then, they find user-specific subsets

of trajectories that preserve the usefulness of the data to an advertiser while keeping the

privacy feature hidden. Methods, such as k -anonymity, similarly seek to anonymize data

with respect to the unique user records that identify it to prevent linking a user’s identity to

sensitive datasets (Li et al. 2023). Microsoft’s proposed Ad Selection API for their Microsoft

Edge browser has privacy protections built into it, including k -anonymity constraints.7

The application of data obfuscation methods to geo-tracking data is not trivial. Altering

location data can prevent them from being usable for businesses. Approaches that do balance

utility-privacy trade-offs tend to be computationally intensive and do not generally lend

themselves to business applications (Cunha, Mendes, and Vilela 2021; Terrovitis et al. 2017).

The high dimensionality of spatial data results in these methods often lacking interpretability

for managerial applications (see, for example, the discussion in Macha et al. 2023).

Our approach to make geo-tracking data privacy-safe is to adapt the recommendations

from the data obfuscation literature in a managerially relevant way for location data. One

way of doing this is to not use each user’s geo-tracking data at all and instead, use their

nearest neighbors’ averaged data to construct synthetic geo-tracking features. We address

this possibility in our simulation exercise on synthetic data generation.

Where users are tracked. Most apps and firms rely on geo-tracking in confined geofenced

areas for their marketing applications. The likelihood of shoppers redeeming mobile coupons

for stores inside a shopping mall increases if they receive the coupons in close proximity to

the focal stores (Danaher et al. 2015). Similarly, targeting based on real-time or historical

consumer location within geofences is more effective for firms (Dubé et al. 2017). In practice,

third-party data providers, such as Radar and BlueDot enable geofencing services for firms

7See, for example, Microsoft’s announcement “New privacy-preserving ads API coming to Microsoft Edge.”

Accessed on March 14th, 2024.
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in a way that allows them to observe shoppers in their vicinity. Similarly, location-specific

laws can allow firms to target users in select locations only.8

One way to restrict geo-tracking data is to disallow the tracking of users that are beyond

a certain distance of a store and only track users who enter the geofence. We address this

possibility in our simulation exercise on geographical restrictions.

How frequently users are tracked. The frequency with which geo-tracking data can be

collected may be consequential for consumer privacy as it is for firm decision-making (Kim,

Bradlow, and Iyengar 2022). Temporal limitations imposed on individual-level web tracking

abilities impact online businesses (Trusov, Ma, and Jamal 2016). Regulatory actions that

discourage or prohibit the sale of consumers’ raw location data streams could deter firms

from high-frequency tracking to avoid litigation and reputational damage, in addition to

other deterrents like the cost of storing high-frequency data (FTC 2024). In the context

of geo-tracking, temporal restrictions would suggest tracking consumers’ locations at longer

intervals or at static locations near points-of-interest (POIs) only.

One way to restrict the geo-tracking data is to reduce the frequency with which these data

are tracked. We consider this possibility in our simulation exercise on frequency restrictions.

Overall, recent privacy regulations, firms’ own self-regulation practices, and the data

obfuscation literature seek to protect consumers’ data and privacy in various ways. We

leverage a few key privacy measures and the extant research on privacy to derive and evaluate

privacy-safe simulation exercises for geo-tracking data in our application. Through a set of

consumer surveys, we provide some face validity that these simulation exercises are perceived

as privacy-preserving by consumers (see Web Appendix B). Importantly, by design, each of

our proposed geo-tracking simulations restricts consumer geo-tracking data in a different way,

either completely transforming the data (e.g., what and in what form data are tracked) or

reducing the scope and extent of tracking (e.g., where and how frequently data are tracked).

In this way, our proposed simulations vary in how they protect consumer geo-tracking data.

8See, for example, Google’s policy “Target ads to geographic locations.” Accessed on March 25th, 2024.
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DATA AND EMPIRICAL STRATEGY

Data Sources

Our primary data source is a safe-driving app based in Texas, U.S.9 The app has over

200,000 users. For our research, we accessed a random sample of about 20% of the app users

(i.e., 38,980). The purpose of the app is to encourage safe driving. The app can detect

when a user is driving at a speed of over 10 miles per hour and if they are using their phone

while driving. The app incentivizes safe driving by awarding users a fixed number of points

for each mile driven when they do not use their phone while driving. The points can be

redeemed at partnering firms, which are primarily restaurants. Although the app is unique

in its safe driving aspect, it shares some commonalities with deals and delivery apps by

offering information about local businesses. The nature of data collected by the app is also

not unique, and most apps that access location tracking have similar data collection abilities,

e.g., food delivery apps and navigation apps.

The app records a user’s position (i.e., latitude and longitude) every three minutes once

it detects that a trip has begun. The app uses this information to record locations and

driving speed with date and timestamps. The app company gave us access to individual-level

geo-tracking data for 60 weeks between September 2018 and October 2019, comprising over

120 million driving points. We use these data to identify driving trajectories and restaurant

visits. We also have access to data on app users’ demographics (e.g., age, gender, zip code)

self-reported by users at the time of signing up for the app.

The second source of our data is Safegraph.10 This dataset consists of the polygons (i.e.,

geometries) that identify each restaurant in Texas. We use Safegraph’s geometry/polygon

data to identify restaurant locations.

9The app is headquartered in College Station, Texas. During our sample period, the app had business partners

and users in cities, such as Houston and San Antonio, among others.
10See https://www.safegraph.com/academics “SafeGraph is a data company that aggregates anonymized

location data from numerous applications in order to provide insights about physical places, via the SafeGraph

Community. To enhance privacy, SafeGraph excludes census block group information if fewer than five devices

visited an establishment in a month from a census block group.” We use Safegraph’s geometry/polygon data only.
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We supplement these data with additional data from Yelp to identify the category of each

restaurant using Yelp’s category tags (Klopack 2024).11 We use these data when constructing

our feature set relating to past user visits to a restaurant of the same category and brand as

the target restaurant for which we are interested in making predictions.

Finally, we also access the American Community Survey (ACS) 2016 5-year estimate for

the Census Block Groups (CBG) in our sample to generate demographic features, such as

household income and education. These features are not directly recorded at the user level

by the app but could contain important demographic information at the CBG level.12

Identifying Visits

We identify restaurant visits from geo-tracking data by combining them with retail

geometries in two steps. First, we identify instances when a driver is stationary. Based on

the data, we operationalize “stops” as intervals of at least 10 but at most 120 minutes when

the driver is not moving (Pappalardo and Simini 2018). Next, we classify a stop as a “visit”

when the location coordinates lie within a polygon defined by the longitude-latitude pair of

each vertex of the restaurant location. Examples of polygons of restaurants in Bryan/College

Station are shaded in blue in the maps shown in Figure 1.

Identifying visits by overlaying polygons and driving trajectories may not capture a

fraction of the true visits to restaurants that are adjacent or that are within another store

(e.g., Subway within Walmart). For this reason, we only use standalone restaurants in our

analyses. Similarly, if the last point recorded for a specific trip lies outside the polygon of a

restaurant, we would not identify this point as a visit if the user entered the restaurant just

after the last GPS point was recorded. In these cases, training the model with the resulting

data would lead to under-performance relative to a model trained with true visit data.

11The Yelp category tags and the main category appear in Web Appendix C.
12The American Community Survey has been used extensively in academic research to extract demographic

information at the Census Block Group and Census Tract levels. See, for example, Avenancio-León and Howard

(2022); Bertrand, Kamenica, and Pan (2015); Chetty, Hendren, and Katz (2016); Klopack, Lewis, and Luco (2024);

Landvoigt, Piazzesi, and Schneider (2015); Naik, Raskar, and Hidalgo (2016).
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Figure 1: Restaurant Polygons in Our Data

Notes: The polygons are geometric boundaries available for each store using satellite imagery.

Sample Restaurants for Analysis

Our sample of restaurants for making predictions comprises 422 standalone restaurant

locations. To arrive at this sample, we considered 10,582 standalone restaurant locations

across the 40 cities in Texas in which the app was present during our data period. To avoid

sparse outcomes, we chose the sample of 422 restaurants (about 4% of the total restaurants)

that at least 10 app users visited in our data period. We verify that these locations are

representative of the larger set of 10,582 standalone restaurants. Specifically, we examined

the type of restaurant (chain vs. non-chain) and the distribution of restaurant brands and

categories overall and in our sample. Our sample is similar to the broader set of restaurants

in terms of the proportion of chain stores (i.e., 75.05% overall vs. 73.69% in our sample), the

brand of the restaurant (i.e, top chains are fast food brands like McDonald’s, Starbucks, and

Sonic overall and in our sample), and the food category of the restaurant (i.e., top categories

are American, Burger, and Latin American overall and in our sample).13

13Even though our 422 restaurants are a representative sample, in Web Appendix Tables D1-D4, we report the

results for alternative samples of restaurants.
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Aggregating Data to the Restaurant-week Level

We identify restaurant visits at the user-week level. However, restaurants are typically

interested in predicting the total number of visits (see a summary of our interviews with

managers in Web Appendix A). To transform user-week level data to the restaurant-week

level, we take the sum of visits from the app users to a restaurant in a given week. We use

this total number of visits as our target outcome of the prediction.

In addition to the total visits, we also provide a way to aggregate data for the input

features (i.e., predictors like demographics, behavioral, and geo-tracking information). To

do this, we identify the relevant population for each restaurant as users who were within

30 miles of the restaurant in the previous week, the maximum distance users travel to visit

restaurants in our data.14 We then aggregate the individual-level features of these users to

the restaurant-week level. For example, if a Starbucks location has a subset of app users

nearby in a given week, we average their user-week level data on each feature to create the

data for that Starbucks location for that week. Note that in this approach, the relevant

set of users for a restaurant varies by week depending on who was driving nearby.15 Our

models predict one week ahead to allow inter-temporal separation between the time period

over which the feature set is constructed and the outcome (Lee, Yang, and Anderson 2021).

Information Sets for Predicting Aggregate Visits

In this section, we introduce four models that vary in the information set used as input

and that allow us to quantify the relative predictive value of geo-tracking data. The models

include a baseline model without any consumer data (i.e., only restaurant- and time-related

features) and three models with different sets of consumer data. We report the information

sets used in our prediction models in Table 2.

14In Web Appendix Table D5, we report the results for an alternative threshold of 17 miles. We use 17 as our

alternative threshold because it is the mean distance users travel to visit a restaurant, conditional on visiting.
15In Web Appendix Table D6, we repeat this analysis by aggregating over users that live, rather than drive, within

30 miles of a restaurant.
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Table 2: Information Sets for Predicting Restaurant Visits

Model Feature set used as input

Baseline Restaurant and time features

Model A Demographics + behavioral information + home-zip code distance

Model B Demographics + behavioral information + home-tracked distance

Model C Demographics + behavioral information + home-tracked distance + other driving features

Notes: Baseline features include restaurant category, city, and season effects. Demographics include age,
gender, and census-block level data on education, income, etc. but no location information. Behavioral
information refers to consumers’ number of past visits to the restaurant in the data period before the
target week in the prediction model (e.g., 30 past weeks when predicting for week 31, 31 past weeks when
predicting for week 32, and so on). Home-zip code distance refers to the distance between the centroid of
the zip code (self-reported in the app) in which a customer resides and the target restaurant in the
prediction model. Home-tracked distance refers to the distance between the latitude-longitude of the
customer’s home (recovered from geo-tracking data) and the target restaurant. Unlike static home
locations, other driving features capture time-varying information recovered from geo-tracking data, e.g.,
trip distance, which is the minimum average distance between the user’s trips and the target restaurant
overall and for different time-of-day windows (e.g., 8 am to 12 pm, 12 pm to 4 pm, and so on).

Baseline Model. Restaurants can make a prediction about the total number of visits in

a week without using any consumer-level information. Retailers commonly form an idea

about the visits they expect based on their category, location, and the time of year, among

other aggregate features (e.g., Varga et al. 2024). Therefore, we use this information in our

baseline model with restaurant- and time-related features. Our baseline model allows us to

benchmark the predictive performance of models with other sets of consumer-level predictors

(e.g., demographics, behavioral, geo-tracking data).

Model A: Demographic and Behavioral Information with Home-Zip Code Distances. In

our first specification, we include information that is commonly available to restaurants

about their customers’ demographics and past behavior relating to the restaurant. The

demographic features include consumers’ age, gender, and publicly-available ACS data that

contain information about the population, race, employment, income, home-work commute,

household size, and education at the census-block level. We also include behavioral information

about the customers’ number of past visits to the restaurant. Restaurant managers are likely

able to access historical information on the total number of invoices, orders, or reservations

for customers who use their app or reservation system. However, they cannot easily get this
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information for competing restaurants or for other locations of their own parent brand in

the case of chains (Weis 2023). Therefore, we include past visits to the target restaurant as

behavioral information when predicting visits to that restaurant for a given week. However,

we treat visits to other restaurants of the same brand or category as geo-tracking information.

Since behavioral information aims to capture consumers’ past patronage of the restaurant,

we reserve the first half of our data (i.e., weeks 1-30) to compute this information. We then

make predictions for each week, starting week 31 till week 60. In this approach, past visits

use the data from weeks 1-30 to predict for week 31, then weeks 1-31 to predict for week 32,

and so on (consistent with Sun et al. 2022). Thus, behavioral information captures visits

computed over an increasing number of weeks every week.

Finally, we also include information on consumers’ home zip codes in Model A. Many

restaurants do not observe their customers’ home addresses. However, restaurants can often

access consumers’ home zip code information through their app or reservation system. We

compute the home-zip code distance as the distance from the centroid of a zip code to the

target restaurant for which we are predicting. We compute this distance for each restaurant

in our data for the relevant set of consumers each week.

Model B: Demographic and Behavioral Information with Home-Tracked Distances. In this

specification, we replace the home-zip code distance in Model A with home-tracked distance,

i.e., the distance between the latitude-longitude coordinates of a consumer’s home address

and the target restaurant for which we are making the prediction. Home-tracked distance is

derived from geo-tracking data and captures static information about a consumer’s precise

home relative to the restaurant. To compute home-tracked distances, we follow Pappalardo

et al. (2022) and first use the latitude and longitude of geo-tracking data to identify the

home location of each user. We then use the home location to calculate a user-restaurant

specific “distance from home” measure (i.e., home-tracked distance to a restaurant). As with

home-zip distance, we also compute the home-tracked distance for each restaurant in our

data for the relevant set of consumers each week.
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Model C: Demographic, Behavioral, and Complete Geo-Tracking Information. In this

specification, we build on Model B’s static home location and add time-varying features

from geo-tracking data. Because any single geo-tracking metric can be fairly privacy-friendly

relative to the full geo-tracking data and because, in practice, firms are likely to use multiple

metrics, we extract several features. This task is not trivial. First, geo-tracking data have

spatio-temporal richness but are also noisy. Second, using the entire trajectory of consumer

movement as inputs in our prediction models is computationally intensive and not readily

scalable. Finally, any information derived at the consumer-week level needs to be aggregated

to the restaurant-week level (see Section on Aggregating Data to the Restaurant-week Level).

To extract useful information from geo-tracking, we focus on the following key features of

these data. First, similar to the home-tracked distance, we compute a trip distance for each

user-week as the minimum distance at which the user was from each restaurant in our data in

the previous week before the week for which we are predicting visits. It provides additional

information relative to home-tracked distance because it changes every week and considers a

user’s driving activity relative to the target restaurant. Second, since users’ driving patterns

vary depending on the time of day, we also compute the trip distance by time-of-day to

each restaurant for different time-of-day windows (e.g., 8 am to 12 pm, 12 pm to 4 pm)

in the previous week. Third, geo-tracking data can provide information to managers about

their consumers’ visits to other restaurants and not just their own restaurants. Therefore,

we include geo-tracking features about the past number of visits and the recency of visit to

any restaurant of the same category (i.e., number and recency of category visits) and the

same brand (i.e., number and recency of brand visits) as the target restaurant for which we

are predicting. Finally, we also include information about the previous week’s visits to the

target, same-brand, and same-category restaurant for those driving near the restaurant (i.e.,

within 30 miles). Geo-tracking data allows tracking this information not commonly available

through point-of-sale terminals or reservation systems of a restaurant.

We report the summary statistics of the features at the restaurant-week level in Table 3.
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Table 3: Information Sets for Prediction and Summary Statistics

Feature Description Mean

Target No. of weekly visits by app users 2.35

Demographic/behavioral information

Age Average age of users 32.65

Gender (female) Proportion of females .47

Race Proportion of white population in a census block .72

Employment Proportion of full-time employed people .45

Commuters Proportion of ≥ 16 year-olds commuting to work .44

Family households Proportion of households with > 1 person in a census
block

.24

Education Proportion of ≥ 25 year-old with highschool diploma .58

Income Median household income ($) in the past 12 months 72,509

Home-zip code distance Distance (in miles) between the centroid of the
home-zip code and the restaurant

61.54

Past visits No. of visits to the restaurant in the past 64.93

Geo-tracking information

Home-tracked distance Distance (in miles) between home coordinates
inferred using geo-tracking data and the restaurant

27.03

Trip distance Minimum distance (in miles) between trip
coordinates and restaurant for the previous week

11.06

Trip distance - 0004 Trip distance for trips between midnight and 4 am 10.80

Trip distance - 0408 Trip distance for trips between 4 am and 8 am 10.76

Trip distance - 0812 Trip distance for trips between 8 am and 12 pm 11.02

Trip distance - 1216 Trip distance for trips between 12 pm and 4 pm 10.50

Trip distance - 1620 Trip distance for trips between 4 pm and 8 pm 10.71

Trip distance - 2000 Trip distance for trips between 8 pm and midnight 10.63

Past brand visits No. of visits to same-brand restaurants in the past 1,383

Past category visits No. of visits to same-category restaurants in the past 4,943

Previous week visits No. of visits to the restaurant in the previous week if
the individual was within 30 miles of the restaurant

1.58

Previous week brand visits Previous week visits to same-brand restaurants 7.84

Previous week category visits Previous week visits to same-category restaurants 28.24

Recency of past visit Days since last visit to the restaurant 54.10

Recency of past brand visit Days since last visit to same-brand restaurants 49.94

Recency of past category visit Days since last visit to same-category restaurants 46.10

Notes: The statistics are reported for the 422 restaurants in our sample and their aggregated data over
5,951 observations at the restaurant-week level. Past period refers to rolling window of 30 or more weeks
upto the prediction week and previous week refers to the week before the prediction week.

18



On average, a restaurant gets 2.35 visits from the app users in a week. In terms of

demographics, the average age of users is 32.65, 47% are female, 72% are white, 45% are in

full-time employment, 44% are commuters, 24% live in family households, 58% have at least

a high school diploma, and the median household income is $72,509. Based on their home

zip code, on average, users live 61.54 miles from the restaurant.16 On average, a restaurant

records 64.93 visits in the past from the users in our sample. Among the geo-tracking

features, the home-tracked distance is 27.03 miles and the trip distance is 11.06 miles. Based

on the time of day, the trip distance ranges from 10.50 miles during the 12pm to 4pm window

and 11.02 miles from 8am to 12pm. On average, restaurants of the same brand as the target

restaurant record 1,383 visits in the past weeks from the app users and those of the same

category receive 4,943 visits. The target restaurant received 1.58 visits in the week before

the week of prediction, same-brand restaurants received 7.84 visits, and the same-category

restaurants received 28.24 visits. On average, the last consumer visit was 54 days ago to

the target restaurant, 50 days ago to the same-brand restaurants, and 46 days ago to the

same-category restaurants.

To illustrate the patterns captured by the geo-tracking data, the panel at the center of

Figure 2 presents a two-dimensional projection of all the driving features in a multi-dimensional

space of our entire feature set (see Web Appendix E for details). Each point in this projection

represents a user. The driving features determine the shape of this visual, but the points in

the figure are color-coded by one feature, i.e., the minimum distance between a user’s trips

to the target restaurant for a specific restaurant-week. The users represented by purple dots

have lower trip distances, while those represented by pink dots have higher trip distances.

To illustrate these patterns, we also show the heat maps of driving patterns for two users in

different regions of the projections (Van der Maaten and Hinton 2008). The user from the

purple region of the plot on the left, for example, has a lower driving distance and drove

16Several reasons may explain the disparity between the home-zip code and the home-tracked distance. For

example, the app is headquartered in College Station, a college town. If students in College Station report their zip

code in the app as that of their hometown rather than their local zip code, these distances will differ significantly.
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mostly within Katy, Texas. In contrast, the user from the pink region of the plot on the

right has a higher trip distance spanning Killeen, Austin, and College Station in a week.

Figure 2: Visualizing Geo-Tracking Data: Trip Distance

Machine Learning Framework and Data Splits

Once we generate the total number of visits by app users each week to our sample

of restaurants and the input feature sets at the restaurant-week level, our final dataset

for prediction has 5,951 restaurant-week level observations. This dataset represents an

unbalanced panel of 422 restaurants observed over one or more of the 30 weeks for which

we make predictions (i.e., the second half of the data). We split the data at random into

80% restaurant-weeks for training a model and use the remaining 20% restaurant-weeks as

test data to evaluate the trained model. Thus, our main empirical strategy is to train one

ML model at the restaurant-week level using the training data and evaluate and report the

model’s performance using the test data. The separation into training and test data ensures

that the model is learning general patterns during training and is less likely to overfit to

the same restaurant-weeks whose patterns it learns. We quantify the out-of-sample model

performance for the test data using the root mean squared error (RMSE).
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While our main empirical approach of estimating models with different information sets

already benchmarks against a model with only restaurant- and time- features, we also report

three alternative empirical approaches. First, we report alternative models that explicitly

predict deviations in visits based on seasonality as the target rather than the total number

of visits (see Web Appendix Table D7). Second, we report a model that splits the data by

week within each restaurant to train and predict visits for that restaurant rather than at the

restaurant-week level (see Web Appendix Table D8). Finally, we repeat our main analysis for

an alternative outcome that scales up the total visits from app users to the entire population

of the city in which the restaurant is located, i.e., target visits × ratio of the city’s population

to the number of app users in that city in our sample (see Web Appendix Table D9). Across

these alternative approaches and outcomes, we find results that are consistent with those

from our main model, although the magnitude varies.

Model Training

To predict visits to each restaurant one week ahead, we train one model for all the

restaurant-weeks in our training data. We then evaluate the performance of the model on

the test data.

Because our goal is to quantify the predictive value of geo-tracking data over and above

demographic, behavioral, and static location information, we use various ML algorithms,

such as the Least Absolute Shrinkage and Selection Operator (Lasso), Ridge Regression,

Elastic Net Regression, and Boosted Regression Trees. Because Elastic Net offers better

performance than Ridge and Lasso, and is more efficient than boosted trees for our data, we

report this model in the main results. We report the alternative models in Web Appendix

Tables D10, D11, and D12. The results from these models follow similar patterns as those

from our main model.
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Out-of-sample Evaluation

We evaluate the performance of our trained ML model by computing the root mean

squared error (RMSE) associated with using each information set in Table 2. We report the

average RMSE for each model for the test data.

The RMSE is the square root of the sum of squared differences between the predicted

and observed number of visits for each restaurant and week combination rw in our data. It

is computed as follows:

RMSE =

√√√√ 1

Ntest

Ntest∑
rw=1

(yrw − ŷrw)2

We also report the mean absolute error (MAE) as an alternative performance metric.

MAE is calculated by taking the average of the absolute differences between the predicted

and observed number of visits for each restaurant-week. The formula for MAE is as follows:

MAE =
1

Ntest

Ntest∑
rw=1

|yrw − ŷrw|

Bootstrapping Procedure

We use a bootstrap procedure to evaluate the differences in predictive performance across

models with different information sets. We implement this procedure by generating 2,000

bootstrap samples from the training and test data with replacement for each restaurant-week

combination in our data. For each sample, we compute the performance metrics for the

models under consideration. By doing this over the bootstrap samples, we can construct a

distribution for each measure of interest and model under consideration. We then use the

percentile method to construct 95% bootstrapped confidence intervals of each evaluation

metric. Our bootstrapping procedure allows us to quantify the uncertainty in our estimates.
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RESULTS: PREDICTIVE PERFORMANCE BY INFORMATION SET

In this section, we present the findings for our first research objective: examining the

extent to which geo-tracking information improves the predictive performance of our models

relative to consumers’ demographics, behavioral, and static home location information.

Table 4 reports the predictive performance of each of our models corresponding to the

information sets in Table 3. Specifically, we report the RMSE for each model, the difference

in RMSE between models, and the bootstrapped confidence intervals computed using the

test data at the restaurant-week level.

The results in Table 4 show that all the models with consumer data (i.e., Models A-C)

perform better than the baseline model in terms of reducing the RMSE, our measure of

predictive performance. Model C, which includes the geo-tracking data, performs better

than all other models, including those that contain static location information. The RMSE

for Model C is 22.27% lower than that of the baseline model, 14.73% lower than that of Model

A with demographics, behavioral information, and home-zip code distance, and 14.77% lower

than that of Model B with demographics, behavioral information, and home-tracked distance.

Our bootstrapped confidence intervals further show that the differences in performance

between Model C with geo-tracking data and all other models are statistically significant,

though we also find that there is no significant difference between Models A and B.

While the performance metrics improve when we include geo-tracking data, the percentage

improvement in the root mean squared metric does not easily lend itself to business objectives.

To address this, we evaluate the performance of Model C separately for instances when the

model over-predicts and for instances when it under-predicts and compare its performance to

that of Model A, which does not use geo-tracking data. The idea behind this analysis is that

over- and under-prediction may generate different costs to restaurants, and thus, it is relevant

to determine whether Model C performs better than Model A across these instances or if it is

better only in one of these instances. We present our findings in Figure 3, which reports the
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Table 4: Results: Predictive Performance by Information Set

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 5.643
[5.589, 5.698]

Model A: Home-zip distances 5.144
[5.097, 5.191]

.499
[.487, .512]

Model B: Home-tracked distances 5.146
[5.088, 5.193]

.497
[.485, .510]

-.002
[-.003, -.002]

Model C: Home-tracked,
trip distances,
and other driving

4.386
[4.341, 4.432]

1.257
[1.223, 1.291]

.758
[.730, .785]

.760
[.732, .787]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the text. N = 5,951 restaurant-weeks. Note that all feature sets include
controls for seasons, cities, and categories. Results correspond to Elastic Net models.

empirical cumulative distribution function (CDF) of the absolute difference between actual

and predicted visits, as a percentage of actual visits for models with geo-tracking data (Model

C) and those without geo-tracking data (Model A). The empirical CDF of models without

geo-tracking lies to the right of that of models with geo-tracking data, which suggests that

models using geo-tracking predict visits better in both cases.

Figure 3: Actual vs. Predicted Visits under Models with and without Geo-tracking Data

Notes: The plots show the cumulative proportion of restaurant-weeks by the extent of over- and
under-prediction of visits using models with and without geo-tracking data (Model C vs. A).
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SIMULATION EXERCISES: RESULTS UNDER RESTRICTED

GEO-TRACKING

In this section, we report our results for our second research question: how does restricting

geo-tracking data under different types of privacy regulations impact the predictive performance

of models that use these data? This question is important from a policy perspective because

of the recent emergence of regulations restricting data tracking (FTC 2024; Klosowski 2021).

If policymakers regulate consumer geo-tracking by requiring, for example, data summarization

so firms cannot access coordinate-level data, or by imposing geographical restrictions on

where users are geo-tracked, how would such restrictions impact the predictive performance

of models that use these restricted data?

To answer this question, we outline an approach to quantify the extent to which restricting

geo-tracking under alternative privacy regulations impacts predictive performance. In Table 1,

we motivated four types of regulatory restrictions and how they can be applied to geo-tracking

data. Next, we describe how we simulate each of these regulations in our setting and discuss

how they impact predictions from our models relative to unrestricted geo-tracking.

User-level summarization. In the first category of simulations, we consider regulations

requiring data to be anonymized with respect to the user that generates that data through

summarization. We implement a version of this following Pappalardo and Simini (2018) and

construct driving summary features for each user-week. These summary features contain

aggregated information about a user’s driving behavior in a week, such as the total distance

traveled, entropy (i.e., variability of the locations visited relative to their past distribution

of visited locations), time of driving, number of days driven, and number of trips each

week. These features are independent of the target restaurant’s location and capture general

mobility patterns about a user in a privacy-preserving way (e.g., see consumer surveys in

Web Appendix B). The technical details of computing these features and their summary

statistics appear in Web Appendix E. Under this simulation, we train a model with the
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baseline features, the demographic and behavioral information, and these summary features.

Unlike Model C that uses home-tracked locations, trip-distances, and other geo-tracking

features, this model uses aggregated driving summaries.

Synthetic data generation. In the second category of simulations, we consider regulations

that require adding perturbation or noise to the data to generate synthetic data. We

implement a version of this using a k -Nearest Neighbor approach at the user level, which

allows us to ensure that users cannot be re-identified from these data. Specifically, we identify

each app user’s k = 10 nearest neighbors based on home locations and use the average of

their data to replace the user’s data. For example, to compute the focal user’s home location,

we take the centroid of the polygon formed by the home locations of these nearest neighbors.

To compute variables such as the minimum distance between a trip and a restaurant, we

consider the mean distance among the set of minimum distances of the nearest neighbors

and the target restaurant. By following this approach, we ensure that the data that we use

as input for our models cannot be used to re-identify specific users but is generated based

on averages over the other users. Under this simulation, we train Model C with the new

synthetic data generated for each user-week and aggregated to the restaurant-week level as

in our main analysis.17

Geographical restrictions. In the third category of simulations, we explore how geographical

restrictions impact prediction outcomes. We implement this simulation using geofences that

restrict firms to observe only users who entered a certain radius (e.g., one mile) of their

location. Any users that are outside this distance are, therefore, not observable to the firms

and are excluded from our simulated prediction model. However, conditional on a user being

within the one-mile geofence, the firm is able to observe their geo-tracking data and is able

to recover, for example, true home locations. Under this simulation, we train Model C using

these restricted geo-tracking data on only those users who entered the geofence.18

17To aggregate to the restaurant-week level, we consider users whose “synthetic” distance generated using the

neighbors’ data was within 30 miles of the restaurant in the week before the prediction week to mimic a situation in

which the firm can only observe synthetic data and never access the focal user’s original data.
18An alternative way of implementing geofences is to restrict both users and trajectories to be tracked only within
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Frequency restrictions. In the fourth category of simulations, we consider regulations

that restrict how often users may be tracked but still allow firms to use the data at the

coordinate level. In practice, we consider regulations that record the data less often than

what our focal app does. We implement two versions of this.

In the first version, we keep the first point of each trip but systematically drop the

data within a trip. Specifically, we re-construct the geo-tracking data at lower frequencies,

assuming they are collected at one-half and one-third frequency of the original three-minute

interval with which our data provider records the data.19 These exercises are meant to

represent choices firms might make about temporal granularity when deciding how often to

record data.

In the second version, we implement simulations that reduce geo-tracking frequency

in ways that replicate static geo-tracking regulations. These exercises represent scenarios

in which firms may track users at specific points of interest, e.g., at the start and end

of their trips at places of business, recreation, and so on. In practice, we consider two

implementations that differ along this dimension. In the first one, we record the first and

last points of a trip and drop all other records. In the second one, we record data for one

random trip per user-week, keep all records of it, and drop any other trips that week.

Under each simulation exercise, we use the restricted geo-tracking data for both training

and test purposes. Even though we implement four types of privacy restrictions based on

Table 1, it is important to note that these restrictions are qualitatively different in how and

how much they may protect consumer privacy. While some restrictions completely prevent

user identification, others may simply hide some features of their data.20

Next, we discuss the results of our simulations.

the geofence. However, doing so artificially forces the home-tracked distances to be within the geofence. Therefore,

we prefer a more conservative approach of keeping all user data conditional on the user being within the geofence.

We also consider the possibility that, in practice, businesses could use a different geofence distance around their store

locations. We report alternative versions of this simulation with other radii in Web Appendix Table D13.
19In Web Appendix Table D13, we also implement a variation that collects data at one-tenth of the original

frequency and one that keeps the overall amount of data the same as the 1/2 geo-tracking frequency but drops data

randomly rather than systematically.
20In Web Appendix F, we provide examples from our data to illustrate how each simulation protects user identity.
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Table 5: Results: Simulation Exercises with Varying Restrictions on Geo-Tracking

Simulation Mean RMSE Difference Percentage

Complete geo-tracking (Model C in Table 4) 4.386
[4.341, 4.432]

User-level summarization

Summary features instead of geo-tracking 5.098
[5.050, 5.146]

.712
[.646, .777]

16.24%

Synthetic data generation

K-nearest neighbors’ data 4.741
[4.692, 4.791]

.355
[.342, .368]

8.09%

Geographical restrictions

Geofenced users within 1 mile of restaurant 4.542
[4.494, 4.591]

.156
[.093, .220]

3.56%

Frequency restrictions

Reduced frequency of geo-tracking

1/2 frequency 4.420
[4.377, 4.463]

.034
[.004, .063]

.77%

1/3rd frequency 4.494
[4.448, 4.540]

.108
[.098, .117]

2.46%

Static geo-tracking

First- and last- trip points only 4.492
[4.445, 4.538]

.106
[.100, .111]

2.42%

One trip per week at random only 4.485
[4.438, 4.532]

.099
[.038, .160]

2.26%

Notes: RMSE = Root mean squared error. The complete geo-tracking model includes demographics,
behavioral, and geo-tracking data (i.e., Model C of Table 4). This Table reports the mean and
bootstrapped confidence intervals (in square brackets) of the RMSE of each model and the difference in
RMSE between the complete geo-tracking model and each simulation using the test data. Results
correspond to Elastic Net models.

Results: Predictive Performance under Varying Restrictions on Geo-Tracking

Table 5 presents our findings for the simulation analysis. In each simulation, we report

the results for Model C after re-training and evaluating it using restricted geo-tracking data.

Our main finding in this section is that all the restrictions that we evaluate result in a

lower predictive performance than that of Model C with complete geo-tracking. However,

the decrease in performance varies by the type of restriction. Importantly, we find that even
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under various policy restrictions, models with geo-tracking information generally perform

better than those that do not use geo-tracking information at all.

Next, we describe the results in detail. First, we find that regulations that use summaries

of geo-tracking data at the user level result in the largest decrease in predictive performance

relative to Model C. Specifically, the RMSE is 16.24% larger than the one in Table 4.

Second, we find that regulations that generate synthetic data using k-nearest neighbors

(k-NN) also result in higher RMSE, which is 8.09% larger than Model C with complete

geo-tracking presented in Table 4. While the use of synthetic data results in a significant

decrease in predictive performance, this decrease is significantly smaller than the one associated

with using summarization of geo-tracking data. By construction, the synthetic data approach

introduces fewer changes to the data that our model can use as input than driving summaries,

and our findings imply that this less restrictive approach preserves some of the predictive

power that is lost under user-level summarization.21

Third, we find that regulations that restrict firms to observe data only for users who were

within a mile of their locations result in a 3.56% decrease in predictive performance relative

to Model C with complete geo-tracking data. This simulation shows that though geofences

impose a significant restriction to firms that collect geo-tracking data, the restricted data are

still useful when predicting customer visits relative to a context in which these data are not

available at all or if they are restricted in other ways (e.g., limiting what data are tracked).

Fourth, we consider simulations that restrict the frequency with which geo-tracking data

are recorded, including reduced frequency and static geo-tracking at specific times only.

We find that using reduced-frequency data decreases the predictive performance by .77%

and 2.46% under one-half and one-third tracking frequencies, while using static geo-tracking

decreases the predictive performance by around 2% relative to complete geo-tracking.

Overall, our findings show that regulations that restrict the data that can be used to

21The main difference between user-level summarization and synthetic data generation is that the synthetic data

approach keeps all the geo-tracking features but in a form that makes it harder to identify individual users, while

user-level summarization replaces the sensitive geo-tracking features with driving summaries.
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predict app users’ visits reduce the performance of the model relative to when unrestricted

geo-tracking data are used. Though the direction of effects is somewhat expected, the relative

magnitude of prediction losses provides us with rich insights and shows that not all regulatory

restrictions are equal in their implications for prediction. Specifically, we find that the largest

reductions in predictive performance are associated with restrictions that fully transform

the data. For example, user-level summarization, which seeks to prevent user identification,

results in the largest decreases in predictive performance. On the other extreme, frequency

restrictions, which retain coordinates in their raw form, reduce predictive performance the

least. Between these extremes, we consider a number of regulations that vary in how they

restrict geo-tracking data. Even in the most restrictive cases, the prediction model performs

similarly to or better than when the models are restricted to not using geo-tracking data.

ROBUSTNESS CHECKS

Alternative Restaurants

In our main analysis, we report the results for a sample of 422 restaurants that at least

10 app users visited. Even though we verified that these 422 restaurants are representative

of the broader set of restaurants, it is possible that the results are sensitive to the specific

restaurant sample. Thus, in Web Appendix Table D1 and Table D2, we report the results

for alternative samples of restaurants based on more stringent sample selection criteria of at

least 15 and 25 users visiting those restaurants anytime in our data period. It is also possible

that our findings are generated by the sample of restaurants that have relatively few visits

and that our model is unable to predict similarly for more popular restaurants. To examine

this, we report the results for the top restaurants by number of visits during our prediction

period in Web Appendix Table D3 and Table D4. We find qualitatively similar results across

all the samples, although the magnitude varies based on the number of visits in each sample.
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Alternative Aggregation Thresholds

In our main analysis, we use a 30-mile distance threshold to identify a restaurant’s

potential customers and aggregate their demographic, behavioral, and geo-tracking features

to predict the total visits to a restaurant each week. To test the robustness of this 30-mile

threshold, which is based on the maximum distance consumers traveled to visit a restaurant

in our data, we also report the results for two alternative analyses. In the first analysis, we

use a threshold of 17 miles, which is the mean distance consumers travel to visit a restaurant

in our data. The results are reported in Web Appendix Table D5. In the second analysis,

instead of aggregating over consumers who drove within 30 miles of the restaurant in the

previous week, we aggregate over consumers whose home-zip code distance is within 30 miles

of the restaurant. The results are reported in Web Appendix Table D6. We find that Model

C with the geo-tracking data outperforms the models without these data in both cases.

Alternative Model Setups

We test the robustness of our results to three different model setups based on alternative

target and data splits. First, instead of predicting the total number of visits, we predict

deviations in visits as our outcome since restaurant managers may be interested in weekly

demand fluctuations. By comparing our models to a baseline, we already capture the

predictive value of geo-tracking data to baseline predictions using restaurant- and time-

features. However, we also directly model deviations in this alternative model setup. To

generate the data on these deviations, we regress the total visits on season identifiers and

compute the residuals. Next, we use these residuals as the target of our prediction models,

excluding the top .05% observations with the highest residuals. The results appear in Web

Appendix Table D7. Second, we train and report a “pooled” model. Instead of splitting

the restaurant-week level data into training and test sets, in this approach, we take each

restaurant and split the weeks into training and test, and stack them. To train our prediction

model, we also include week fixed effects as predictors. The results appear in Web Appendix
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Table D8. Finally, we also train a model using scaled visits i.e., the visits from app users

scaled up to reflect the population of the city in which the restaurant is located. The results

appear in Web Appendix Table D9. In each of the three setups, Model C with geo-tracking

data outperforms the other models.

Alternative Machine Learning Models

While our main models use an Elastic Net Regression, we also train alternative ML

models, such as Lasso, Ridge, and Boosted Regression Trees, to make sure the results are

not unique to the model we use. Since our main interest is in comparing various information

sets, we repeat the specifications reported in the main results in Table 4 and report their

results for alternative models in Web Appendix Tables D10, D11, and D12. The findings are

consistent with those reported in the main analysis.

Alternative Implementation of Simulation Exercises

In addition to our main simulation exercises, we implemented alternative versions using

different parameters for the simulations. Specifically, we trained the geofence models using

larger radii of two, five, and ten miles rather than the one-mile radius in our main analysis.

Similarly, we extended the frequency simulation to one-tenth tracking and one-half random

tracking (i.e., drop half of the driving instances at random, rather than at systematic

intervals). We report the findings from these models in Web Appendix Table D13. We

find support for the main result that the predictive performance of the models with these

alternative thresholds is lower than that of models with complete geo-tracking.

Alternative Metrics

Our main results allow us to compare the performance of various information sets using

RMSE as the performance metric. In addition, we also report the results in our main analysis

for an alternative performance metric, i.e., the Mean Absolute Error (MAE). MAE tends
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to be less sensitive to outliers than RMSE. The results for MAE appear in Web Appendix

Table D14 and show patterns that are similar to the RMSE results.

Outlier Drivers

It is possible that some users in our data may be restaurant delivery drivers or commercial

taxi drivers. Such drivers are likely to have higher than typical levels of driving distances.

To make sure our prediction results are not driven by learning these outlier drivers’ patterns,

we drop any user with driving distances of more than the mean plus three times the standard

deviation and train our prediction model after excluding them. The results appear in Web

Appendix Table D15 and are similar as those we reported earlier.

CONCLUSION

In recent years, many firms have started collecting geo-tracking consumer data and

using them to inform their marketing and operational decisions (Clifford 2018). However,

geo-tracking evokes privacy concerns among app users and regulators. For example, companies

like Tim Hortons have attracted public scrutiny due to their geo-tracking practices (Austen

2022). Many emerging privacy regulations, such as the California Privacy Rights Act, treat

consumer locations as sensitive data and restrict geo-tracking.

In this research, we examined two questions: First, to what extent are geo-tracking data

useful relative to not using consumer data and using only demographic, behavioral data, and

static home location information for predicting visits to a business location? Second, how

does restricting geo-tracking data under various privacy regulations impact the usefulness of

these data for prediction?

We answered our research questions in the context of the restaurant industry using an

application we identified through in-depth interviews with managers, i.e., predicting the

total visits to a restaurant one week ahead (see Web Appendix A for managerial interviews).

Specifically, we used proprietary data from a safe-driving app in Texas with 120 million
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driving instances for 38,980 individual users to make predictions for 5,951 restaurant-weeks

in our sample using a machine learning (ML) approach. From our interviews, we learned

that predictions at a weekly frequency can allow managers to make better decisions about

their marketing and operations. While the potential usefulness of geo-tracking data for

businesses depends on the application under study, we focused on weekly prediction of visits.

Importantly, we compared the performance of models with complete geo-tracking against

those of models with restricted geo-tracking using simulation exercises that are motivated

by privacy regulations, industry practices, recommendations from the data obfuscation

literature, and a consumer survey we conducted (see Web Appendix B).

Our research has several key findings. First, we find that using geo-tracking data increases

predictive performance by 14.77% when compared with using demographic, behavioral, and

static home location information, and by 22.27% when considering only baseline models

that do not include any consumer data. Second, models with geo-tracking data perform

better both by reducing the extent of over- and under- prediction of visits. Third, imposing

privacy restrictions that limit what geo-tracking data are tracked, in what form, where, and

how frequently reduces the usefulness of geo-tracking for prediction by 1%-16% relative to

complete geo-tracking. The extent of the decrease in predictive performance depends on

the type of regulation. Specifically, regulations that restrict what data are geo-tracked (i.e.,

summaries of driving behaviors) and in what form (i.e., synthetic data generated with nearby

users’ data) are associated with the largest decreases in predictive performance (16.24% and

8.09% respectively). We also identify restrictions that have a smaller relative impact on

the predictive performance, such as limiting how frequently users are tracked (.77-2.46%,

depending on the frequency) or where they are tracked (3.56%). Finally and importantly,

models that use restricted geo-tracking still generally outperform models that do not use

geo-tracking information.
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Managerial Implications

Our results have several implications for firms and policymakers. First, our finding

that geo-tracking data allow firms to better predict the total visits from users can help

managers plan their marketing and operations. Our interviews with restaurant managers

revealed that they plan each week’s resource commitments in advance (e.g., decisions to hire

part-time additional staff). For example, the manager of Culvers’ and Red Lobster said

that: “Knowing how many customers to expect the following week can reduce cost, increase

profits, and help manage [staff and inventory] without waste.” By improving the prediction

of total visits, we show that geo-tracking data can help managers better plan ahead.

Second, we find that using geo-tracking data for prediction reduces both over- and

under-prediction of visits by app users. The better performance of our model in both cases

allows firms to evaluate, based on the cost of over- and under-prediction, their decision to

collect and use geo-tracking data for prediction applications.

Third, our additional analyses show that geo-tracking data can be useful for within-restaurant

predictions over weeks and for predicting deviations from typically expected visits. These

findings imply that restaurants can better plan for fluctuations in expected visits if they

have access to geo-tracking data about their consumers. Restaurants that experience more

fluctuations in their traffic could consider leveraging such data for their planning and decisions.

Fourth, in our simulation exercises, we propose practical ways in which firms can protect

and restrict consumers’ geo-tracking data, and show that limiting what data are tracked and

in what form results in the highest predictive losses for firms in our application. However,

other restrictions, such as where data are tracked and how frequently, still allow firms to derive

relatively higher predictive value from geo-tracking, which implies that firms are better off

restricting geo-tracking in these ways when possible. Our findings can also be useful when

firms are purchasing geo-tracking data from third party vendors and need to make decisions

about what data and how much data to access. Reduced frequency of tracking, for example,

can allow firms to save on data storage and server costs relative to complete tracking. More
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importantly, our findings imply that there are ways in which firms can restrict geo-tracking

data in privacy-safe ways (while still getting predictive value from them), which can allow

them to potentially mitigate the risk of litigation and reputational damage, given recent

regulatory action against the mishandling of consumer geolocation data streams (FTC 2024).

Finally, our simulation exercises are meaningful for regulators who often evaluate various

types of restrictions to impose because they can better quantify the relative predictive losses

of each in the context of our application.

Limitations and Future Research

Our research has limitations that future research can address. First, our data come from

the users of a single app. Even though we demonstrate our findings for scaled outcomes at

the city-population level, we do not observe the overall population of visitors to a restaurant

and can only analyze the total visits from app users. If managers were interested in

predicting aggregate demand to their location from all customers and not just app users,

they should interpret our outcome measure with some degree of finite-sample measurement

error. While both the app users and the restaurants in our sample are representative of

the general population, we are limited to our sample of restaurants and users, so there

could be value in expanding our analysis beyond our sample. Second, many restaurants

use geo-tracking data to make real-time predictions. Our ML framework predicts visits

one week ahead using past weeks’ data. Future research may address real-time predictions

under privacy restrictions for other relevant applications, e.g., for targeting mobile coupons.

Third, we acknowledge that the potential usefulness of geo-tracking data for businesses

depends on the application under study. Our paper can speak to one application, which uses

geo-tracking information to predict visits to a restaurant in a week. If data are available,

future research can extend the usefulness of geo-tracking in other contexts, for other outcomes

(e.g., revenues and profits), and for other applications of interest. Given the heightened

concerns with using personal consumer data, firms may also prefer to use such data in
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situations where it advances consumer interest, which is another potential avenue for future

research (Soleymanian, Weinberg, and Zhu 2019). Fourth, while our simulated regulations

are generally perceived as privacy-preserving by consumers we surveyed, future research can

better elicit consumers’ willingness to share data under different geo-tracking data-sharing

scenarios since consumers’ stated and actual preferences for privacy may vary (Adjerid, Peer,

and Acquisti 2018). Finally, while we examine simulated regulations drawn from the current

policy landscape and privacy literature, there may be other regulations of interest we cannot

study. For example, most app users in our setting are adults, so we cannot comment on

privacy protection for children (e.g., Johnson et al. 2023). Similarly, app users in our setting

have opted-in to be tracked, so we cannot comment on consenting vs. non-consenting users

(e.g., Lin and Strulov-Shlain 2023). Future research, if data are available, can specifically

examine these additional important regulations.
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WEB APPENDIX A

INTERVIEWS OF RESTAURANT MANAGERS AND OWNERS

Table A1: Managerial Responses on How Predictions of Consumer Visits May be Useful,
the Consumer Information they Collect/Wish to Collect, and at what Intervals

Manager Role Experience Gist of Interview Responses

Manager
Jimmy John’s (JJ)

5 years

Predicting consumer visits every week would help us with
staffing and figuring out if we’re overstaffed or understaffed.
We can’t fill staffing gaps immediately, so we receive staff
applications on a weekly basis and look at their availability
for the week. Customer demographics are important and will
also tell us where our customers reside. Our app asks for an
address for delivery, so we know how close customers live to
JJ’s store. Knowing consumers’ location and visit patterns to
other restaurants could help us target ads. I wouldn’t prefer
to keep data for more than a few weeks or six months at most
to not alarm customers.

Manager
Asian restaurant in Chicago

2-3 years

At our small Chinese restaurant in Chicago, we collect
demand data and customer visits. A prediction algorithm
that can tell us how likely a customer is to visit us each
week would be helpful. This would help us to know who
is coming and how often, which would allow us to plan and
manage our resources effectively. Knowing what kind of food
our customers like based on their past visits and/or to other
restaurants also helps us make better decisions.

Manager and Chef
Culvers’ and Red Lobster

3+ years

It [predicting customer visits] would reduce costs greatly. If
you can predict how many people are likely to visit and
maybe even which meals they will need, you can plan which
ingredients to order, or how much staff to hire. In my
experience, you’d have half of the staff fulltime and half of
the staff part-time. Schedules get set typically on Fri/Sat for
the following week. Knowing how many customers to expect
the following week can reduce cost, increase profits, and help
manage all of those without waste. It would also be useful to
see how many are local vs. out-of-town customers. Are they
mostly going to be coming in for mornings or afternoons, then
you could have specials around those meals and times instead
of all day deals. Or even a special deal of the week.

Food Administrator
University Dining Services

27+ years

If a prediction algorithm used data specific to my restaurant
to make predictions about my consumers’ visits, I would use
it to make decisions. It would be important to ensure that
the algorithm considers factors, such as the demographics and
needs of our customers. However, I would not rely solely
on the algorithm as it is important to stay in touch with
what customers want. In terms of the frequency at which
I would like to predict consumer visits, I would say weekly
would be the most useful. This would help me to tailor our
offerings and marketing strategies to better meet the needs of
our customers.
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Manager Role Experience Gist of Interview Responses

Owner, Three fine-dining
restaurants in Atlanta

20+ years

I’d love to see the data on who comes back to our restaurant
for repeat service. If I knew how many customers (and who)
is coming, I can prepare my restaurant and work towards
satisfying them, e.g., if I have mostly female or non-binary
customers, or where they come from, maybe their relationship
status. More detailed information about our customers
is incredibly useful when it comes to satisfying them and
growing our business. However, we also need to be careful
not to overload ourselves by trying to predict customer visits
every single day or by collecting too much data about them.
It might be better to focus on weekly predictions, so that
we can plan and make sure we are ready to provide the best
possible experience for our customers. It can also help us
plan ingredients, staffing, and store locations i.e., where to
locate based on what kind of demographics and competitors
are there and what information we have on them.

Manager
Chilli’s

18 months

The data I’d really be interested in is repeat customers. POS
systems don’t really track that and not everyone has rewards
programs (or joins one). It would also be useful to know
how many people are likely to come in and overlap that with
community events they plan to ahead. Demographics about
customers can also help look at trends about who they are,
whether they are visiting if they are more proximate, how
far they’d travel for a restaurant etc. Monthly predictions are
fine, but for some decisions, weekly or more regular data could
also help especially for scheduling. For example, if you know
Thursday is going to be busy for family customers, hopefully
you can increase your customer accounts too, you can move
people in and out faster. If they can come and go quickly, it
will improve the customer experience.

Hostess
Restaurant in Chicago

2 years

A prediction algorithm that can tell me how likely a customer
is to visit my restaurant would be very helpful. I could use this
information to adjust staffing schedules, move tables around,
and plan weekly specials. I could also use it to determine
when to promote happy hour specials and other promotions on
social media. I would like to be able to predict consumer visits
on a weekly basis. This is because most decisions, including
staffing, scheduling, and social media marketing as well as
ordering supplies are planned on a weekly basis.

Manager
Crosby’s Kitchen in Chicago

15+ years

The most important decisions I make are hiring and customer
service. Predicting consumer visits can help because the
problem is that sometimes it’s slow and sometimes it’s busy.
I don’t like to over or understaff. So I’d like to know the
predictions a week in advance. Sometimes also a month in
advance because other people I work with have lives outside
the restaurant, but usually a week is fine.

Notes: The interviews were conducted after securing Institutional Review Boards (IRB) approval.
Managers were recruited through a research database at a large public university. The only inclusion
criterion was some experience in the restaurant industry in the U.S. Each interview lasted about 30
minutes via zoom. We include restaurant name and location only if the managers agreed to share it.
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WEB APPENDIX B

CONSUMER SURVEYS

In this section, we report the results of a survey we conducted to ask consumers about
their privacy perceptions towards geo-tracking. While our privacy restrictions under the
simulation exercises are primarily motivated by the current regulatory environment, industry
practices, and recommendations from the data obfuscation literature, we further wanted to
validate that the simulation exercises are privacy preserving from the perspective of end
consumers who are subject to such tracking.

We recruited survey participants through a research database at a large public university
in the U.S. after securing IRB approvals. The survey was administered using a Qualtrics
link. Participation in the survey was voluntary. Participants were offered a Target gift card
worth five dollars for completing the survey. Upon accessing Qualtrics, the participants were
presented the following information:

“Imagine you are using an app on your phone that gives you points that you can redeem
at local restaurants and businesses. Read the scenarios below about the kind of data the app
tracks from your usage, then indicate the extent to which you agree with each statement that
follows: <insert scenario>

We presented the scenarios listed in Table B1 in a random order. After each scenario
was presented, we asked survey participants to indicate their privacy perceptions for that
scenario across five dimensions adapted from the privacy literature (e.g., Smith, Milberg,
and Burke 1996).

Table B1: Scenarios

Text of Scenarios in the Survey

Complete tracking: The app collects data about your geo-location constantly after it has detected
that driving has started.

Summary features: The app collects data about your driving summary (e.g., total distance you
drive, time of day when you drive) rather than geo-location coordinates.

Synthetic data: The app collects data about your geo-location coordinates, but adds noise to your
data (e.g., using similar users’ data) so that your exact address is not identified.

Geofence: The app collects data if you were near a local restaurant.

Frequency: The app collects data about your geo-location coordinates with a frequency of every
half hour (i.e., 30 minutes) after it has detected that driving has started.

Static first- and last- points: The app collects data about your geo-location coordinates at the
start and end of your trip.

Static random trip per week: The app collects data about your geo-location coordinates for one
trip at random each week.

The privacy dimensions were:

1. It bothers me that the app collects these data.

2. I’m concerned that the app is collecting too much information about me.
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3. I am concerned about my privacy and how the app might use my data.

4. It bothers me to give my information to this app.

5. I will stop using this app in the future.

Participants were asked to rank each of the five statements for each scenario they were
presented on a scale of 1 (strongly disagree) to 5 (strongly agree).

Results of the Survey

Overall, 191 participants completed the survey. Of the participants, 60% were female.
The average age was 44 years. Across the five privacy measures, participants’ privacy
concerns under complete geo-tracking had an average score of 4.18 out of 5. Relative to
complete geo-tracking, user-level summarization had an average score of 3.17 (p < .001),
synthetic data generation had an average score of 3.51 (p < .001), and geographic restrictions
had an average score of 3.22 (p < .001). Among frequency restrictions, the half-hour interval
of tracking had an average score of 3.73 (p < .001), the static tracking of first- and last-trip
points only had an average score of 3.77 (p < .001), and one trip per week at random had an
average score of 3.46 (p < .001). We report the mean rating for each question and averages
across the five questions in the survey for each scenario in Table B2.

Table B2: Results: Mean Rating for Each Survey Question and Overall

Simulation Q1 Q2 Q3 Q4 Q5 Mean

Complete geo-tracking 4.20 4.27 4.32 4.24 3.88 4.18

User-level summarization

Summary features instead of geo-tracking 3.11 3.18 3.43 3.19 2.92 3.17

Synthetic data

Add noise to the data 3.53 3.58 3.68 3.54 3.24 3.51

Geographical restrictions

Geofenced users when near restaurant 3.21 3.20 3.45 3.25 2.99 3.22

Frequency restrictions

Reduced frequency of geo-tracking

Reduced frequency 3.71 3.78 3.93 3.76 3.49 3.73

Static geo-tracking

First- and last- trip points only 3.78 3.87 4.04 3.81 3.34 3.77

One trip per week at random only 3.46 3.43 3.74 3.49 3.19 3.46

Notes: N = 191. Survey statements Q1-Q5 were as follows: Q1. It bothers me that the app collects
these data. Q2. I’m concerned that the app is collecting too much information about me. Q3. I am
concerned about my privacy and how the app might use my data. Q4. It bothers me to give my
information to this app. Q5. I will stop using this app in the future. Participants were asked to rank
each statement from 1 (strongly disagree) to 5 (strongly agree). Reduced frequency refers to half hour.
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WEB APPENDIX C

CATEGORIZATION OF RESTAURANTS

Table C1: Categories of Restaurants using Yelp API

Categories Description Popular tags

1 American Restaurants serving American
cuisine, but excluding restaurants
specializing in burgers and
sandwiches, and excluding
restaurants that were also tagged as
another type.

American (Traditional),
American (new), breakfast,
brunch, chicken wings, diners

2 Asian Restaurants specializing in cuisines
from south Asian, east Asian, and
southeast Asian countries, as well as
pacific islands.

Chinese, Japanese, sushi bars,
Asian fusion, Thai, Indian,
Hawaiian

3 Burgers Restaurants with tag “Burgers”. Burgers, hot dogs, sports bars,
Steakhouses

4 Coffee Restaurants with tag “Coffee”. Tea, coffee, café

5 Dessert Restaurants with tag “Dessert”. Dessert, frozen yogurt

6 European Restaurants specializing in Italian,
French, or other European cuisines,
except for restaurants also tagged
“Pizza”.

Italian, French, Irish, Wine
Bars, Noodles, Mediterranean

7 Latin
American

Restaurants specializing in cuisines
from south and central America and
the Caribbean.

Mexicana, Tex-Mex, Lat́ın
American, seafood, Caribbean,
Cuban

8 Pizza Restaurants with tag “Pizza”.
Pizza, Italian, salad

9 Sandwiches Restaurants with tag “Sandwiches”,
“Deli”, or “Cheesesteaks”.

Sandwiches, deli, cheesesteaks

10 Other Restaurants not tagged as any of the
above categories.
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WEB APPENDIX D

ROBUSTNESS CHECKS AND ADDITIONAL ANALYSES

In this section, we present the robustness checks for alternative sample of restaurants
(Tables D1-D4), alternative aggregation approaches (Table D5 and Table D6), alternative
model setups (Tables D7- D9), alternative ML models (Tables D10- D12), alternative ways
of implementing the simulation exercises (Table D13), alternative metrics (Table D14), and
outlier drivers (Table D15).

Table D1: Results: Predictive Performance of Elastic Net Regression by Information Set
for Restaurants with At Least 15 Users Visiting

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 6.191
[6.130, 6.252]

Model A: Home-zip distances 5.671
[5.618, 5.724]

.520
[.506, .534]

Model B: Home-tracked distances 5.673
[5.620, 5.726]

.518
[.504, .532]

-.0028
[-.0032, -.0024]

Model C: Home-tracked,
trip distances,
and other driving

4.828
[4.776, 4.880]

1.363
[1.325, 1.401]

.843
[.811, .874]

.845
[.814, .876]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 4,756 for 299 restaurants across 30 prediction weeks. The
restaurants are selected based on at least 15 app users visiting anytime in the data period. Note that all
feature sets include the baseline feature set of seasons, city, and category.
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Table D2: Results: Predictive Performance of Elastic Net Regression by Information Set
for Restaurants with At Least 25 Users Visiting

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 7.164
[7.087, 7.241]

Model A: Home-zip distances 6.602
[6.536, 6.668]

.562
[.544, .580]

Model B: Home-tracked distances 6.603
[6.537, 6.669]

.561
[.543, .579]

-.0007
[-.0017, .0003]

Model C: Home-tracked,
trip distances,
and other driving

5.683
[5.619, 5.747]

1.481
[1.431, 1.531]

.919
[.879, .960]

.920
[.880, .961]

Notes: RMSE = Root mean squared error. In column “mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 2,855 for 142 restaurants across 30 prediction weeks. The
restaurants are selected based on at least 25 app users visiting anytime in the data period. Note that all
feature sets include the baseline feature set of seasons, city, and category.
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Table D3: Results: Predictive Performance of Elastic Net Regression by Information Set
for Top 25 Restaurants by Visits

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 15.235
[15.076, 15.394]

Model A: Home-zip distances 14.974
[14.826, 15.122]

.261
[.238, .286]

Model B: Home-tracked distances 14.961
[14.813, 15.109]

.274
[.251, .299]

.013
[.006, .020]

Model C: Home-tracked,
trip distances,
and other driving

13.580
[13.431, 13.721]

1.655
[1.569, 1.743]

1.394
[1.315, 1.473]

1.381
[1.303, 1.459]

Notes: RMSE = Root mean squared error. In column “mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 567 restaurant-weeks for a sample of 25 restaurants with
the highest number visits in the prediction period. Note that all feature sets include the baseline feature
set of seasons, city, and category.
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Table D4: Results: Predictive Performance of Elastic Net Regression by Information Set
for Top 50 Restaurants by Visits

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 11.258
[11.139, 11.377]

Model A: Home-zip distances 10.859
[10.756, 10.962]

.399
[.373, .425]

Model B: Home-tracked distances 10.868
[10.764, 10.972]

.390
[.364, .416]

-.009
[-.012, -.006]

Model C: Home-tracked,
trip distances,
and other driving

9.529
[9.426, 9.632]

1.729
[1.657, 1.801]

1.330
[1.272, 1.388]

1.339
[1.281, 1.397]

Notes: RMSE = Root mean squared error. In column “mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 1,152 restaurant-weeks for a sample of 50 restaurants with
the highest number visits in the prediction period. Note that all feature sets include the baseline feature
set of seasons, city, and category.
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Table D5: Results: Predictive Performance of Elastic Net Regression by Information Set
for Alternative Aggregation Threshold of 17 Miles

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 5.643
[5.589, 5.698]

Model A: Home-zip distances 5.147
[5.100, 5.194]

.496
[.485, .509]

Model B: Home-tracked distances 5.146
[5.099, 5.193]

.497
[.486, .510]

.0011
[.0008, .0014]

Model C: Home-tracked,
trip distances,
and other driving

4.383
[4.337, 4.429]

1.260
[1.227, 1.295]

.764
[.736, .791]

.763
[.735, .791]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 5,951 restaurant-weeks. Note that all feature sets include
the baseline feature set of seasons, city, and category. Compared to the main model that aggregates over
users within 30 miles (i.e., the maximum distance consumers travel to visit a restaurant in our data) of a
restaurant, we use the alternative threshold of 17 miles (i.e., the mean distance consumers travel to visit a
restaurant in our data) for this analysis.
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Table D6: Results: Predictive Performance of Elastic Net Regression by Information Set
for Aggregation over Users based on Home-zip Distance

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 5.643
[5.589, 5.698]

Model A: Home-zip distances 5.145
[5.098, 5.192]

.498
[.487, .511]

Model B: Home-tracked distances 5.144
[5.097, 5.191]

.499
[.488, .512]

.0007
[.0003, .0013]

Model C: Home-tracked,
trip distances,
and other driving

4.491
[4.446, 4.536]

1.152
[1.125, 1.181]

.654
[.632, .676]

.653
[.631, .675]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 5,951 restaurant-weeks. Note that all feature sets include
the baseline feature set of seasons, city, and category. Compared to the main model that aggregates over
users within 30 miles (i.e., the maximum distance consumers travel to visit a restaurant in our data) of a
restaurant, we aggregate over users whose home-zip code distance from the restaurant is within 30 miles for
this analysis.
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Table D7: Results: Predictive Performance of Elastic Net Regression by Information Set
for the Deviation Model

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 2.381
[2.351, 2.411]

Model A: Home-zip distances 2.357
[2.331, 2.383]

.024
[.019, .029]

Model B: Home-tracked distances 2.357
[2.331, 2.383]

.024
[.019, .029]

.000
[.000, .000]

Model C: Home-tracked,
trip distances,
and other driving

2.271
[2.247, 2.295]

.110
[.100, .120]

.086
[.078, .094]

.086
[.078, .094]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 5,921 restaurant-weeks excluding restaurant-weeks with
top .05% residuals (i.e., very high residuals) based on seasonality. Models A and B have the same mean
RMSE upto three decimal places.
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Table D8: Results: Predictive Performance of Elastic Net Regression by Information Set
for a “Pooled” Model within Restaurants

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 5.664
[5.624, 5.704]

Model A: Home-zip distances 5.151
[5.117, 5.185]

.513
[.503, .523]

Model B: Home-tracked distances 5.151
[5.117, 5.185]

.513
[.503, .523]

.000
[.000, .000]

Model C: Home-tracked,
trip distances,
and other driving

4.422
[4.389, 4.455]

1.242
[1.216, 1.268]

.729
[.708, .750]

.729
[.708, .750]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 5,951 restaurant-weeks. Model A and B have the same
results upto three decimal places. Note that all feature sets include controls for seasons, city, and category
as well as a week identifier. Compared to the main analysis with restaurant-week level splits, the data in
this analysis is split within restaurant by week i.e., training data contain subset of weeks for a restaurant
and the test data contain the remaining weeks for the same restaurant. However, we use the week prior to
the prediction week to construct the input features, consistent with the main model.

xiii



Table D9: Results: Predictive Performance of Elastic Net Regression by Information Set
for Visits Scaled by the Proportion of App Users in a City

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 1,217.77
[1,208.10, 1,227.45]

Model A: Home-zip distances 1,109.20
[1,099.74, 1,118.66]

108.57
[106.65, 110.49]

Model B: Home-tracked distances 1,105.88
[1,096.53, 1,115.22]

111.89
[109.97, 113.82]

3.32
[2.90, 3.75]

Model C: Home-tracked,
trip distances,
and other driving

1,069.69
[1,061.11, 1,078.27]

148.08
[145.48, 150.68]

39.51
[37.76, 41.26]

36.19
[34.54, 37.83]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to that
of the mean difference between two models. We implement this using 2,000 bootstrap replications for each
model, as described in the main text. N = 5,951 restaurant-weeks. Model A and B have the same results
up to three decimal places. Note that all feature sets include the baseline feature set of seasons, city, and
category. This model uses target visits in each restaurant-week scaled to the proportion of app users i.e.,
number of app users divided by the total population of the city in which the restaurant is located.

Table D10: Results: Predictive Performance of Ridge Regression by Information Set

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 5.643
[5.588, 5.698]

Model A: Home-zip distances 5.136
[5.088, 5.184]

.507
[.495, .519]

Model B: Home-tracked distances 5.139
[5.091, 5.187]

.504
[.492, .516]

-.0024
[-.0026, -.0021]

Model C: Home-tracked,
trip distances,
and other driving

4.392
[4.347, 4.437]

1.251
[1.221, 1.281]

.744
[.720, .768]

.747
[.723, .771]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 5,951 restaurant-weeks. Note that all feature sets include
the baseline feature set of seasons, city, and category.
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Table D11: Results: Predictive Performance of Lasso Regression by Information Set

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 5.644
[5.589, 5.699]

Model A: Home-zip distances 5.144
[5.097, 5.191]

.500
[.487, .513]

Model B: Home-tracked distances 5.147
[5.100, 5.194]

.497
[.484, .510]

-.0021
[-.0025, -.0017]

Model C: Home-tracked,
trip distances,
and other driving

4.384
[4.338, 4.430]

1.260
[1.221, 1.294]

.760
[.735, .791]

.763
[.735, .791]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 5,951 restaurant-weeks. Note that all feature sets include
the baseline feature set of seasons, city, and category.

Table D12: Results: Predictive Performance of Boosted Regression Trees
by Information Set

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 5.577
[5.521, 5.633]

Model A: Home-zip distances 5.014
[4.963, 5.065]

.563
[.554, .572]

Model B: Home-tracked distances 5.081
[5.028, 5.134]

.496
[.488, .504]

-.067
[-.070, -.064]

Model C: Home-tracked,
trip distances,
and other driving

4.371
[4.325, 4.417]

1.206
[1.190, 1.222]

.643
[.632, .654]

.710
[.699, .721]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 5,951 restaurant-weeks. Note that all feature sets include
the baseline feature set of seasons, city, and category.
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Table D13: Results: Predictive Performance of Elastic Net under Alternative
Implementation of Simulation Exercises

Simulation Mean RMSE Difference

Complete geo-tracking (Model C in Table 4) 4.386
[4.341, 4.432]

Alternative geographical restrictions

Geofenced users within 2 miles of restaurant 4.444
[4.398, 4.491]

.058
[.047, .069]

Geofenced users within 5 miles of restaurant 4.526
[4.479, 4.573]

.139
[.129, .150]

Geofenced users within 10 miles of restaurant 4.594
[4.546, 4.642]

.207
[.198, .217]

Alternative frequency restrictions

1/2 frequency at random 4.493
[4.447, 4.540]

.107
[.102, .112]

1/10th frequency 4.462
[4.417, 4.506]

.075
[.057, .094]

Notes: RMSE = Root mean squared error. The complete geo-tracking model includes
demographics, behavioral, and geo-tracking data (i.e., Model C of Table 4). The table reports the
mean and bootstrapped confidence intervals (in square brackets) of the RMSE of each model and
the difference in the RMSE between the complete geo-tracking model and each simulation using
the test data, similar to the results reported in Table 5.
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Table D14: Results: Predictive Performance of Elastic Net Regression by Information Set
using Mean Absolute Error (MAE) Metric

Model Mean MAE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 1.818
[1.813, 1.823]

Model A: Home-zip distances 1.672
[1.667, 1.677]

.146
[.142, .150]

Model B: Home-tracked distances 1.672
[1.667, 1.677]

.146
[.142, .150]

.000
[.000, .000]

Model C: Home-tracked,
trip distances,
and other driving

1.307
[1.303, 1.311]

.511
[.507, .515]

.365
[.361, .369]

.365
[.361, .369]

Notes: MAE = Mean absolute error. In column “Mean MAE,” the confidence interval corresponds to that
of the mean MAE for that model. In all other columns, the confidence interval corresponds to that of the
mean difference between two models. We implement this using 2,000 bootstrap replications for each model,
as described in the main text. N = 5,951 restaurant-weeks. Models A and B have the same mean MAE
upto three decimal places. Note that all feature sets include the baseline feature set of seasons, city, and
category.
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Table D15: Results: Predictive Performance of Elastic Net Regression by Information Set
after Excluding Outlier Drivers

Model Mean RMSE Difference from Difference from Difference from

Baseline Model A Model B

Baseline 5.470
[5.417, 5.523]

Model A: Home-zip distances 4.988
[4.942, 5.034]

.482
[.470, .491]

Model B: Home-tracked distances 4.990
[4.945, 5.037]

.480
[.467, .494]

-.0022
[-.0025, -.0019]

Model C: Home-tracked,
trip distances,
and other driving

4.289
[4.243, 4.335]

1.181
[1.148, 1.214]

.699
[.672, .726]

.701
[.675, .729]

Notes: RMSE = Root mean squared error. In column “Mean RMSE,” the confidence interval corresponds
to that of the mean RMSE for that model. In all other columns, the confidence interval corresponds to
that of the mean difference between two models. We implement this using 2,000 bootstrap replications for
each model, as described in the main text. N = 5,938 after dropping outlier drivers with more than mean
plus three times standard deviation of driving distances. Note that all feature sets include the baseline
feature set of seasons, city, and category.
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WEB APPENDIX E

USER-LEVEL SUMMARIZATION OF GEO-TRACKING DATA:
TECHNICAL DETAILS

We follow Pappalardo and Simini (2018) to extract mobility patterns for the users in our
data from their geo-coordinates. Because coordinate-level data may be considered sensitive,
and policymakers may restrict its use, in our simulations, we explore how summarizing
these raw data at the user level without revealing exact locations might perform when
used as inputs in our analyses. Because human mobility follows remarkably consistent
patterns (Gonzalez, Hidalgo, and Barabasi 2008), using aggregated data rather than the
geo-tracking data does not mean necessarily mean that our predictive performance will
be hurt. To implement this approach, we rely on the DIary-based TRAjectory Simulator
(DITRAS) framework (Pappalardo and Simini 2018). This framework separates the temporal
characteristics of human mobility from its spatial characteristics. It turns mobility data into
a diary generator represented as a Markov model, which we can use to generate features of
interest.

Next, we describe the features that we compute at the user-week level to summarize
geo-tracking data, following Pappalardo and Simini (2018)’s feature set. The first set of
features relates to the randomness of consumers’ driving trajectories. This is important
because as the randomness of driving behavior increases, the likelihood of an algorithm
being able to learn from past information to predict future visits decreases. Consumers
whose driving patterns have a lower degree of randomness may be driving similar routes,
e.g., they may have the same commute from home to work. As a result, they may be exposed
to the same set of restaurants along their route. However, those with a higher degree of
randomness, e.g., who may be driving out of town more frequently, may be exposed to a
different set of routes and restaurants more. Thus, capturing the randomness in driving
patterns can be informative of visitation decisions.

We use three measures of randomness: random, uncorrelated, and real entropy based on
the mobility literature. Entropy is the informational value of past driving behavior when
trying to predict future behavior (Pappalardo and Simini 2018). Random entropy measures
the uncertainty of an individual’s next location, assuming that this individual’s movement
is completely random among N possible locations (Wang, Wu, and Zhu 2019). Uncorrelated
entropy captures the heterogeneity of locations visited by the user. Real entropy additionally
accounts for the order in which different locations are visited by users and their time spent
at each location, thus capturing the user’s full spatiotemporal mobility (Song et al. 2010).

The second set of features computed from geo-tracking data relates to how much the app
users drive. We take this into account by computing the radius of gyration, which is the
characteristic distance traveled by the driver (Gonzalez, Hidalgo, and Barabasi 2008). The
radius of gyration allows us to identify how far consumers typically drive, thus providing
useful information related to each consumer. In addition to trajectory-based characteristics,
we also capture the overall number of days on which a consumer drives, how many coordinates
lie along their trip routes, and the maximum distance they traveled away from the focal
location where they spend the most time during the training period.

Finally, we focus on the specific characteristics of each trip, for example, the number of
quick stops (of ≤ 10 minutes) and long stops (of ≥ 60 minutes, Hoteit et al. 2014). We
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also include a measure of the proportion of trips completed by a user in various windows of
time to account for specific time-of-day effects, and the average number of trips per week
(Pappalardo and Simini 2018). The summary statistics of these features at the user-week
level appear in Table E1.

Next, we describe the technical details of computing these features. Human mobility
tends to display a great degree of spatial and temporal regularity. Driving points that follow
a spatial distribution of displacements over all the users can be well approximated by a
truncated power-law with random walk pattern of step size ∆r (Gonzalez, Hidalgo, and
Barabasi 2008).

Pr(∆r) = (∆r + ∆r0)
−β exp(

−∆r

k
) (1)

where β = 1.75 ± .15, ∆r0 = 1.5km, and cutoff distance of k|D1 ≈ 400km and k|D2 ≈ 80km.

Table E1: Summary Statistics of DITRAS Features of Geo-Tracking Data

Feature Description Mean

Random entropy Variability of a user’s visited locations if each location
is visited with equal probability

5.916

Uncorrelated entropy Variability of a user’s visited locations based on
probabilities of past visits

.99

Real entropy Variability of a user’s visited locations based on
probabilities and order of past visits

5.802

Radius of gyration (miles) Characteristic distance traveled by a user 17.69

Unique days Average no. of unique days of driving 3.87

Locations Average no. of unique points in a user’s trip trajectory 84.21

Max distance (miles) Maximum distance traveled by users from their home 51.44

Short stops No. of stops of ≤10 minutes 15.37

Short stops at restaurants No. of stops at restaurants for ≤10 minutes 2.26

Short stops at unique restaurants No. of stops at unique restaurants for ≤10 minutes 1.77

Long stops No. of stops for ≥60 minutes 8.32

Long stops at restaurants No. of stops at restaurants for ≥60 minutes .94

Long stops at unique restaurants No. of stops at a unique restaurants for ≥60 minutes .72

Morning driving Proportion of trips in the morning (before 11am) .33

Afternoon driving Proportion of trips in the afternoon (11am to 5pm) .33

Evening driving Proportion of trips in the evening (after 5pm) .34

Trip frequency Average number of trips by a user 12.57

Notes: The summary geo-tracking features are computed for all users using their raw geo-coordinates each
week. The reported numbers are aggregated over 5,951 restaurant-weeks for our sample of 422 restaurants.
The number of stops at unique restaurants are computed as the count of unique restaurants a consumer
stops at, e.g., if a consumer stops at twice at the same Pizza Hut location and once at a Starbucks location,
the number of stops at unique restaurants will be two. DITRAS = DIary-based TRAjectory Simulator.
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1. Radius of gyration:

By this formulation, human motion follows a truncated Levy flight random walk with
a probability distribution that is heavy-tailed. We can recover the radius of gyration,
the characteristic distance travelled by user a when observed up to time t, as follows:

rag(t) =

√√√√ 1

nac

na
c∑

i=1

(−→
rai −

−→
racm

)2
(2)

where
−→
rai represents the i = 1, 2, .., nac(t) positions recorded by user a and

−→
racm is the

center of mass of the trajectory.

2. Entropy:

Entropy is a measure of variability in a users’ mobility. We compute three types of
entropy: random, uncorreleted and real entropy (Song et al. 2010).

(a) Random entropy captures the degree of predictability of the user’s whereabouts
if each location is visited with equal probability.

Srandi = log2Ni (3)

where Ni is the number of distinct locations visited by user i,

(b) Uncorrelated entropy captures the degree of predictability of the user’s whereabouts
taking into account past visitation patterns.

Sunci = −
Ni∑
j=1

p (j) log2 pi (j) (4)

where p (j) is the historical probability that location j was visited by user i
characterizing the heterogeneity of visit patterns.

(c) Real entropy captures the degree of predictability of the user’s whereabouts taking
into account past visitation patterns as well as the order in which a user visits a
location. It captures the full spatiotemporal order in a user’s mobility pattern.

Sreali = −
∑
T

′
i⊂Ti

P
(
T

′

i

)
log2

[
P
(
T

′

i

)]
(5)

where P
(
T

′
i

)
is the probability of finding a particular time-ordered sub sequence

and T
′
i in the trajectory Ti.

Ti = {X1, X2, X3, .., XL} (6)

which denotes the sequence of locations at which user i was observed at each time
interval.
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WEB APPENDIX F

PRIVACY-PRESERVATION UNDER SIMULATION EXERCISES

In this section, we provide examples of how each of our simulation exercises might protect
individual user data. There are two main ways in which users can be identified from our
data. First, geo-tracking data can be used to infer precise home locations (i.e., latitude
and longitude), which can then be linked to other datasets uniquely (e.g., property records).
Second, geo-tracking data can also generate unique individual records (i.e., trajectories of
places visited), so even if true home locations are not observed, the uniqueness of records can
still serve as individual quasi-identifiers (e.g., Li et al. 2023). Next we discuss these issues
for each of our simulation exercises.

User-level summarization

Our first simulation exercise that limits what user data are tracked completely replaces
geo-tracking data, including home-tracked locations, with summaries of driving behaviors. In
this way, it prevents user home locations from being identified or used at all in the models. It
also replaces unique user records with driving behaviors that tend to overlap between users,
e.g., two users with different commutes may have similar driving distances each week. In
this way, the user-level summarization of driving behaviors protects individual identities.

Synthetic data generation

Our second simulation exercise that limits what form user data are tracked in generates
synthetic data i.e., replaces a user’s geo-tracking data, including home-tracked locations,
with those of their k -Nearest Neighbors (KNN).

In Figure F1, we illustrate the shift in home location using a sample user from our data.
The Figure shows that KNN shifts the true home location (blue dot) to further away (green
dot), making it difficult to identify the user based on their true home.

Figure F1: Example of User’s Home Location: True vs. Simulated
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By construction, synthetic data generated from other users’ data can also duplicate
records when users share the same set of neighbors. This can prevent users from uniquely
being identified both by changing their data completely and by potentially creating the same
set of data for two or more users.

Geographical restrictions

Our third simulation exercise that limits where users are tracked only keeps user data if
they were within a mile of the restaurant in the previous week i.e., completely protects some
users if they were outside the geofence.

Figure F2 illustrates these patterns for a sample of users from our data based on their
distance to one restaurant in a given week (Chick-fil-A in Houston in Week 32 of our data).
The figure plots the home locations of all users who, when geo-tracking data are unrestricted,
are in the relevant category for this restaurant. The Figure classifies these users into two
categories. Users whose home location is plotted in green are users who were not within
the geofence, and users whose home location is plotted in blue are users who were in the
geofence. In this exercise, all the data of users reported in blue are available, but none of the
data of those users reported in green are available as inputs for Model C under geofencing
restrictions.

Figure F2: Example of Users Protected (vs. Not) Under Geofencing Simulations

Frequency restrictions

Our fourth simulation exercise limits how frequently users are tracked by reducing the
frequency of tracking, e.g., one-third the frequency of original tracking.

In Figure F1, we illustrate the shift in home location using a sample user from our data.
The Figure shows that reduced frequency tracking shifts the true home location (blue dot)
to further away (purple dot), making it difficult to identify the user based on their true
home. In this example, the shift induced by the KNN synthetic data is much larger than
that induced under reduced frequency of tracking.
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While the frequency restrictions hide a user’s true home location, it is possible that
they may still uniquely identify them using their records of past trajectories. In this way,
frequency restrictions could be less privacy-preserving than some of the other simulations we
discuss that completely transform the data and do not keep any raw coordinates.
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