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Abstract

In recent years, firms have become capable of constantly geo-tracking consumers’
locations and movement patterns through mobile apps. Geo-tracking data can allow
firms to better predict consumers’ future actions. However, geo-tracking also raises
privacy concerns among consumers and regulators. Using rich geo-tracking data with
over 120 million driving instances for 38,980 app users, we quantify the extent to
which these data allow restaurants to better predict their consumers’ visits one week
ahead relative to using consumer demographics and past behaviors. We also examine
how restricting geo-tracking data under counterfactual privacy policies impacts the
performance of prediction models that use these data. Using a machine learning
framework, we show that geo-tracking data increase the prediction accuracy of our
models by 3.1% relative to models that use detailed demographic and behavioral
information on past visits and by 14.8% relative to models that use only baseline
demographics that do not include any location information. The results from our
counterfactual policy analyses further show that privacy restrictions that limit what

geo-tracking data are tracked, which users are tracked, and where and how frequently

they are tracked reduce the predictive performance of geo-tracking. However, the
decrease in performance varies by the type of policy restriction; policies that restrict
what data are geo-tracked (i.e., user-level summary of driving behaviors rather than
geo-coordinates) and where users are geo-tracked (i.e., within a few miles of a business
location), result in the largest decreases in predictive performance relative to complete
geo-tracking. Overall, models with restricted geo-tracking still generally outperform
models that do not use any geo-tracking information. Our research can assist managers
and policymakers interested to assess the risks and benefits associated with the use of
geo-tracking data for making predictions.
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INTRODUCTION

In recent years, most firms have become capable of tracking consumers’ locations and

movement patterns through their own or third-party mobile apps (Valentine-De et al. 2018).

Firms use geo-tracking data to better predict consumers’ future actions and make strategic

decisions (Sun et al. 2022). Many restaurants, for example, use geo-tracking data to predict

their customers’ visits to improve their service experience and create local promotions (Dean

2023). Burger King implemented a well-known application of geo-tracking when it o↵ered

the Whopper burger for one cent to customers who ordered it through its app while located

within 600 meters of a McDonald’s (Cli↵ord 2018).1

Despite the potential usefulness of geo-tracking data for firms, these data reveal sensitive

personal information about consumers (Bleier, Goldfarb, and Tucker 2020; Choi, Jerath,

and Sarvary 2023; Goldfarb and Tucker 2012). Canadian co↵ee chain Tim Hortons, for

example, evoked a “mass invasion of privacy” by geo-tracking its millions of app users

round-the-clock (Austen 2022). As a consequence, the use of geo-tracking data by firms

has attracted regulatory action (Binns et al. 2018; Tau 2023). Recent privacy regulations,

such as the California Privacy Rights Act (CPRA) explicitly recognize consumer location

data as personal and sensitive information.

Though the use of geo-tracking data has attracted the attention of consumers, firms,

and regulators, it is not clear to what extent geo-tracking data allow firms to better predict

consumers’ future actions, and how privacy policies impact the usefulness of these data for

business applications. Our research has two main objectives. First, we examine the extent

to which geo-tracking data are useful when predicting consumers’ visits to restaurants one

week ahead, relative to using only traditional metrics like demographics and past behaviors.

Second, we examine how restricting geo-tracking data under potential privacy policies impacts

the usefulness of these data in terms of their predictive performance.

1Many third-party firms, such as Radar and Bluedot enable businesses to build their geo-tracking capabilities

and constitute the growing multi-billion dollar location data ecosystem (Macha et al. 2023)
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While the potential usefulness of geo-tracking data for businesses depends on the application

under study, in this paper, we identify one application in the restaurant industry that

allows us to address our questions. Specifically, based on a set of structured interviews

with restaurant managers, our application uses geo-tracking data from one week to predict

customers’ visits to restaurants in the subsequent week (see Web Appendix Table A1 for a

summary of interview responses). Our empirical context is an ideal setting for this research

because many restaurants have the ability to access geo-tracking data through their own

apps or third-party delivery and deals apps. Furthermore, predicting consumers’ visits can

inform restaurant managers’ decisions about their marketing and operations.

To address our research questions, we use proprietary data from an app that tracks

individual-level driving. The primary purpose of the app is to encourage safe driving. To

do this, the app partners with businesses and rewards safe drivers with points that they

can redeem as discounts at participating locations. In total, our data set contains more

than 120 million driving points tracked over a period of 60 weeks for 38,980 individuals in

Texas. We extract useful features from consumers’ driving trajectories, identify their visits to

restaurants, train and evaluate machine learning (ML) models using separate users and time

periods, and make predictions about whether a user will visit each of these restaurants in a

given week using the previous week’s geo-tracking data. Our findings show that geo-tracking

data increase the prediction accuracy of our models by 3.1% relative to models that use

detailed demographic and behavioral information on past visits and by 14.8% relative to

models that use only baseline demographics without any location information.

After establishing that geo-tracking data have the potential to be useful to businesses for

making predictions, we next assess how restricting geo-tracking data under counterfactual

privacy policies impacts the predictions from our main model with complete geo-tracking.

Motivated by the current policy landscape, industry practices, and the privacy literature,

we identify and evaluate counterfactual policies of four types – policies that restrict what

geo-tracking data are tracked (i.e., user-level summary of driving behaviors rather than

3



geo-coordinates), which users are tracked (i.e., users above a certain age), where they are

tracked (i.e., within a few miles of a restaurant), and how frequently they are tracked (i.e.,

with reduced frequency). We find that imposing privacy restrictions that limit geo-tracking

reduces the usefulness of these data for predicting visits relative to models with complete

geo-tracking by 2.35-14.15%. However, the extent of the decrease in predictive performance

varies by the type of policy. Specifically, policies that restrict what data are geo-tracked and

where users are geo-tracked result in the largest decreases in predictive performance while

those that restrict which users are geo-tracked and how frequently result in smaller decreases.

Importantly, models that use restricted geo-tracking data still generally outperform models

that do not use any geo-tracking data.

Our paper contributes to the growing research on the value of consumer data for firms

and the literature on privacy regulation and data governance . First, the existing work

on the value of data primarily focuses on online platforms and understanding the value

of online browsing data, search histories, and cross-platform data for personalization and

targeting rather than o✏ine geo-tracking data (e.g., Lei, Chen, and Sen 2023; Rafieian and

Yoganarasimhan 2021; Wernerfelt et al. 2022; Yoganarasimhan 2020). In one exception

that is closest to our research, Sun et al. (2022) quantify the value of omnichannel data,

including data on consumers’ o✏ine visits for predicting online shopping two weeks ahead.

In contrast, our application focuses on predicting o✏ine visits using complete geo-tracking

data (and informative features inferred from these data) and quantifying the implications

of restricting geo-tracking under potential privacy policies. Second, the research on privacy

in marketing has largely focused on either quantifying the impact of existing regulations

for online firms (e.g., Goldberg, Johnson, and Shriver 2019; Johnson et al. 2023; Johnson,

Shriver, and Goldberg 2022; Miller and Skiera 2017; Peukert et al. 2022, Zhao, Yildirim,

and Chintagunta 2021) or proposing privacy-preservation frameworks (e.g., Li et al. 2022;

Macha et al. 2023; Tian, Turjeman, and Levy 2023). We leverage this rich body of work as a

starting point for identifying and evaluating potential privacy counterfactuals in the context
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of geo-tracking data, given the increasing importance of such data and a lack of understanding

about their usefulness under privacy restrictions. Overall, our research is complementary to

and extends these papers and the ongoing policy debate about the regulation of consumers’

geo-tracking data (e.g., Austen 2022; Tau 2023).

Our research has several implications for firms and policymakers. First, our finding that

geo-tracking data significantly improve the predictions of consumers’ visits to a restaurant

implies that managers may benefit from collecting and using these types of data. Second,

one of our findings is that models that use restricted geo-tracking data generally outperform

models that do not use geo-tracking at all. Therefore, if geo-tracking is restricted by policy or

practical considerations, managers may still benefit from using some geo-tracking information

over not using any. Finally, our finding that di↵erent types of restrictions on geo-tracking

data impact their usefulness for prediction models di↵erently is informative for managers

and policymakers who may be interested in implementing such restrictions.

RELATED LITERATURE

Our research relates to the value of di↵erent types of data for firms and the privacy

policies that govern data collection and use.

Value of Data for Firms

Researchers have long been interested in quantifying the relative value of di↵erent types of

data for a variety of marketing applications. Consumers’ purchase histories, for example, are

more e↵ective than demographic data for designing targeted pricing strategies (e.g., Acquisti

and Varian 2005; Rossi, McCulloch, and Allenby 1996).

With the growth in digital and mobile technologies, the sources and types of consumer-level

data available to firms have expanded rapidly (Lamberton and Stephen 2016). Recent

research provides useful insights on how this expanded access to data helps digital platforms.

Search platforms can improve the quality of their search results by adopting personalized
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rankings using data on individual consumer search histories (Yoganarasimhan 2020). Online

retailers can increase their weekly revenues by 4-10% by adopting an analytics dashboard

with descriptive data (Berman and Israeli 2022). Combined user data from online and o✏ine

channels is more e↵ective for predicting users’ next two weeks’ online visits and actions on

a website, outperforming single-channel predictions by 7.38% (Sun et al. 2022).

On the flip side, barriers to data access tend to hurt firms. Digital advertisers on

Meta have to spend 37% more to acquire customers in the absence of cross-app data

sharing (Wernerfelt et al. 2022). Similarly, the removal of a search engine’s application

programming interface (API) for accessing external data leads to a 4.6% decrease in the

average click-through rates of its search suggestions (Lei, Chen, and Sen 2023).

Relative to these papers, our research focuses on predicting o✏ine store visits, quantifying

the predictive performance of geo-tracking data relative to demographics and behavioral

information, and understanding the implications of subjecting geo-tracking data to privacy

restrictions. In addition to quantifying the incremental predictive performance of geo-tracking

data for physical stores (i.e., restaurant locations), importantly, our work also relates to the

current issues of data governance and privacy regulation in the context of protecting sensitive

consumer location data.

Data Governance and Privacy Restrictions

In this section, we describe recent privacy measures that regulate firms’ access and use of

data, particularly geo-tracking data. We also derive potential privacy-safe ways to transform

geo-tracking data based on these measures and the relevant literature on privacy.

Firms are often subject to regulations that impact how they collect and use their customers’

data. Depending on their nature and scope, we broadly categorize these regulations into

one or more of the following types: Restricting what data are tracked, restricting which

users are tracked, restricting where or in what locations users are tracked, and restricting

how frequently users are tracked. Table 1 summarizes these four types of restrictions with
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examples of regulations and/or industry practices and potential ways of applying these

restrictions to geo-tracking data under counterfactual scenarios.

Table 1: Overview of Privacy Policy Restrictions and their Related Geo-Tracking
Counterfactuals

Type of restriction Example regulations/practices Geo-tracking counterfactual

What user data are tracked

GDPR protects user data that
contain personally identifiable
information. Google’s Sandbox
technology proposes anonymizing
user browsing data within the
Chrome browser instead of
collecting raw browsing data using
cookies.

User-level summarization:
Use summary features of
driving behaviors from
geo-tracking data rather than
geo-coordinates.

Which users are tracked

COPPA protects children under 13.
AADC disallows targeting users
under 18 with ads in EU.

Age restrictions: Geo-track
only users above a certain
age (e.g., 21).

Where users are tracked

Google does not allow ad targeting
in many locations depending on the
country’s laws. Many data vendors
only sell data to firms within close
proximity of their stores using
geofences.

Geographical restrictions:
Geo-track users only within
certain distances of a focal
restaurant (e.g., 10 miles).

How frequently users are tracked

Users may disallow apps from
constant geo-tracking and instead
select into options, such as only
track “while using the app” or
temporarily when they want to use
a location-based service at a
certain place.

Frequency restrictions:
Geo-track trips at lower
frequency intervals (a) at
random (i.e., allow tracking
only at random points of a
trip), (b) at start and end
points of a trip (i.e., allow
tracking when users are
static at a place and not
constantly), (c) random trip
per week, and (d) at reduced
frequencies.

Notes: GDPR = General Data Protection Regulation. COPPA = Children’s Online Privacy
Protection Act. AADC = Age Appropriate Design Code. EU = European Union.

What user data are tracked. Most privacy policies, such as the California Privacy

Rights Act (CPRA) consider geo-tracking data about consumers’ locations and movement

to be sensitive personal data. One way in which privacy policies restrict geo-tracking is

to completely ban any form of location tracking (Tau 2023). By comparing the predictive
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performance of models with geo-tracking data with those without any geo-tracking data (i.e.,

only demographics or past behavioral information), our research addresses this possibility.

In practice, however, a complete ban is unlikely. Instead, regulations like the General

Data Protection Regulation (GDPR) require anonymizing personally identifiable information

(PII) about users (Wang, Jiang, and Yang 2023). Similarly, Google’s Topics API in its

Privacy Sandbox hides the specific sites users visit and instead, infers broad interest-based

categories to serve relevant ads.2 Individual-level data generally perform better for targeting

advertisements to consumers relative to aggregate data (Danaher 2023). As such, data

brokers commonly use algorithms to create individual user profiles by combining data from

multiple sources (Lin and Misra 2022; Neumann, Tucker, and Whitfield 2021; Yan, Miller,

and Skiera 2022). However, individual-level geo-tracking data pose privacy risks by revealing

exact home locations and trajectories (Macha et al. 2023) and when combined with other

demographic information, pose additional reidentification risks (Li et al. 2022). Firms can

use privacy-preservation frameworks to obfuscate individual identities (e.g., Tian, Turjeman,

and Levy 2023). One way to make geo-tracking data privacy-safe is user-level summarization

i.e., extract features from geo-tracking data that describe users’ driving behaviors without

recording latitude-longitude geo-coordinates or sensitive home location data. We address

this possibility in our counterfactual on user-level summarization.

Which users are tracked. Another commonly employed privacy-protection strategy is

to disallow tracking of vulnerable populations, such as users below a certain age (Singer

2023). Regulations like GDPR disallow ad targeting to users below the age of 18 in the EU,

while COPPA requires parental consent for collecting data on children (Johnson et al. 2023).

Many firms also self-regulate by employing age verifications on their websites (McCabe 2021).

Similarly, the Information Commissioner’s o�ce in the UK bars geo-tracking of children

and if location is tracked for a specific reason, requires turning o↵ consent right after the

app session that allowed tracking (ICO 2022, section 10). Many apps like Google services

2See, for example, Google’s policy “Topics: Relevant ads without cookies”. Accessed on July 21st, 2023.
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for workplace and education require users to be 18 years of age and also follow the Age

Appropriate Design Code (AADC) to be GDPR-compliant and not target ads to underage

users in the EU.3 One way to protect the privacy of younger audiences is to disallow the

tracking of users below a certain age. We address this possibility in our counterfactual on

age restrictions.

Where users are tracked. Most apps and firms rely on geo-tracking in confined geofenced

areas for their marketing applications. The likelihood of shoppers to redeem mobile coupons

for stores inside a shopping mall increases if they receive the coupons in close proximity to

the focal stores (Danaher et al. 2015). Similarly, targeting based on real-time or historical

consumer location within geofences is more e↵ective for firms (Dubé et al. 2017). In practice,

third-party data providers, such as Radar and BlueDot enable geofencing services for firms

in a way that allows them to observe shoppers in their vicinity. Similarly, location-specific

laws can bar targeting in specific locations.4 Geo-tracking in geofenced areas near the focal

stores may be potentially more privacy-preserving for consumers relative to geo-tracking

them anywhere in any location. One way to restrict geo-tracking data is to disallow the

tracking of users beyond a certain distance of the store. We address this possibility in our

counterfactual on geographical restrictions.

How frequently users are tracked. The frequency with which geo-tracking data can

be collected may be consequential for consumer privacy as it is for firm decision-making

(Kim, Bradlow, and Iyengar 2022). In fact, just knowing two randomly sampled locations

visited by a consumer poses the risk of identifying their entire trajectory with 49% success

(Macha et al. 2023). Temporal limitations imposed on individual-level web tracking abilities

impact online businesses (Trusov, Ma, and Jamal 2016). In the context of geo-tracking,

temporal limitations would suggest tracking consumers’ locations at larger time intervals.

One way in which consumers themselves exercise this option in specific apps is to only

allow the app to track their location “while using” the app – which limits the frequency

3See, for example, Google’s policy “Control access to Google services by age.” Accessed on July 14th, 2023.
4See, for example, Google’s policy “Target ads to geographic locations.” Accessed on July 14th, 2023.
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of snapshots at which any one specific app can view consumer geo-locations and prevents

complete geo-tracking. Data storage limitations may also prevent companies from saving

very high frequency data, and they may themselves make the choice to store data at

reduced frequencies. We address the possibility of reduced-frequency geo-tracking in our

counterfactual on frequency restrictions.

Overall, recent privacy regulations and firm’s own self-regulation practices seek to protect

consumers’ data and privacy in various ways. We leverage a few key privacy measures and the

extant research on privacy to derive and evaluate privacy-safe counterfactuals for geo-tracking

data in our application.

DATA SOURCES, FEATURES, AND EMPIRICAL STRATEGY

Data Sources

Our primary source of data is a safe-driving app based in Texas, U.S. The app has over

200,000 users. For our research, we were able to access a random sample of about 20% of

the app users (i.e., 38,980 users). The purpose of the app is to encourage safe driving. The

app can detect when a user is driving at a speed of over 10 miles per hour and if the user is

using their phone while driving. The app incentivizes safe driving by awarding users a fixed

number of points for each mile driven when they do not use their phone while driving. The

points can be redeemed at partnering firms, which are primarily restaurants. Although the

app is unique in its safe driving aspect, it shares some functions with other deal apps, such

as Hooked by o↵ering notifications about local businesses. The nature of data collected by

the app is also not unique, and most apps that access location tracking have similar data

collection abilities, e.g., food delivery apps, navigation apps.

The app records the position (i.e., latitude and longitude) of a user at a fixed interval of

three minutes once it detects that a trip has begun. The app uses this information to record

locations and driving speed with date and timestamps. From this app, we have access

to individual-level driving data for 60 weeks between September 2018 and October 2019,
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comprising over 120 million driving points. We use these data to identify driving trajectories

as well as restaurant visits. We also have access to data on individual demographics (e.g.,

age, gender, zip code) for the app users.

The second source of our data is Safegraph.5 This dataset consists of the polygons (i.e.,

geometries) that identify each restaurant in Texas. We use these locations together with

individual-level driving data to determine if an individual visited a restaurant in a week.6

We supplement these data with additional data scraped from Yelp. The Yelp data help us

identify the category of each restaurant using Yelp’s category tags (Klopack 2022). We use

these data when constructing our feature set relating to past visits by a user to a restaurant

of the same category and brand as the focal restaurant for which we are interested to make

predictions.

Finally, we also access the American Community Survey (ACS) 2016 5-year estimate for

the Census Block Groups (CBG) in our sample to generate demographic features, such as

household income and education. These features are not directly recorded at the user level

by the app but could contain important demographic information at CBG level.7

Features: Demographic, Behavioral, and Geo-Tracking Information

Recall that our goal is to examine how di↵erent sets of information, particularly geo-tracking

data about each consumer, may allow firms to learn about consumers’ likelihood of visiting a

restaurant location. We use di↵erent sets of information as inputs in our prediction models.

These information sets use demographic, behavioral, and geo-tracking information.

5See https://www.safegraph.com/academics “SafeGraph is a data company that aggregates anonymized

location data from numerous applications in order to provide insights about physical places, via the SafeGraph

Community. To enhance privacy, SafeGraph excludes census block group information if fewer than five devices

visited an establishment in a month from a given census block group.” In this paper, however, we only use Safegraph’s

geometry/polygon data to identify businesses’ locations.
6In the Section Features: Demographic, Behavioral, and Geo-Tracking Information, we describe how visits are

identified from the raw data of GPS points.
7The American Community Survey has been used extensively in academic research to extract demographic

information at the Census Block Group and Census Tract levels. See, for example, Avenancio-León and Howard

(2022); Bertrand, Kamenica, and Pan (2015); Chetty, Hendren, and Katz (2016); Landvoigt, Piazzesi, and Schneider

(2015); Naik, Raskar, and Hidalgo (2016).
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We report the information sets used in our prediction models in Table 2 and the summary

statistics for each feature in Table 3.

Table 2: Information Sets for Predicting Restaurant Visits

Model Feature set used as input

Model 1 Baseline demographics

Model 2 Baseline demographics + home-zip code distance

Model 3 Baseline demographics + home-zip code distance + behavioral information

Model 4 Baseline demographics + home-tracked distance + trip distance

Model 5 Baseline demographics + home-tracked distance + trip distance + behavioral information

Model 6 Baseline demographics + home-tracked distance + trip distance + geo-coordinates

Notes: Baseline demographics include age, gender, and census-block level data on education, income, etc.
but no location information. Home-zip code distance refers to the distance between the centroid of the zip
code (self-reported in the app) in which a customer resides and the focal restaurant in the prediction
model. Home-tracked distance, trip distance, and geo-coordinates represent geo-tracking information;
Home-tracked distance refers to the distance between the exact latitude-longitude of the customer’s home
(recovered from geo-tracking data) and the focal restaurant. Trip distance refers to the previous week’s
(i.e., week before the prediction week) minimum average distance between the user’s trips and the focal
restaurant. Behavioral information contains past number of visits to the focal restaurant, to the
restaurants in the same category, and to the restaurants of the same brand as the focal restaurant.

Demographic Information. In our baseline specification (Model 1), we use the demographic

features commonly available to managers: consumer’s age, gender, and publicly-available

ACS data that contain information about the population, race, employment, income, home-work

commute, household size, and education at the census-block level.

Our feature set in the baseline specification does not contain any information about the

consumer’s location or how far they live relative to the restaurant. Many restaurants do

not observe the home address of their customers. However, often restaurants can access

consumers’ home-zip code information either through loyalty programs or through their

reservation systems. We next add this information to our set of demographic variables

(Model 2). We operationalize home zip code as a distance metric i.e., the distance from the

centroid of a zip code to the focal restaurant for which we are making the prediction.8

As shown in Table 3, the average age in our sample is 32.16 and 46% of the users are

8We also evaluated our models using an indicator variable for each zip code in our data, denoting whether or not

the consumer resides in that zip code. However, the models with zip code dummies performed worse. For this reason,

and because the distance metric came up in our interviews with restaurant managers, we use the distance metric.
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Table 3: Information Sets for Prediction and Summary Statistics

Feature Description Mean

Demographic information

Age User’s age in years 32.16

Gender (female) User’s gender =1 if female and =0 otherwise 0.46

Population Total population in a census block 4,339

Race (white) Total white population in a census block 2,941

Employment No. of workers 16 years and over 1,998

Income Median household income ($) in the past 12 months 74,674

Commuters No. of workers 16 years and over who did not work at
home

1,901

Family household Total no. of households with > 1 person in a census
block

1,064

Education Population of age 25 or older with high school diploma 2,617

Home-zip code distance Distance (in miles) between home zip code centroid
and the focal restaurant across all restaurants

149.12

Behavioral information

Past visits No. of past visits to the focal restaurant (e.g., MOD
Pizza at 6622 Fannin St, Houston)

0.004

Past category visits No. of past visits to any restaurant of the focal
restaurant’s category (e.g., Pizza)

0.088

Past brand visits No. of past visits to any restaurant of the same brand
(e.g., any branch of MOD Pizza)

0.032

Geo-tracking information
Home-tracked distance
to the restaurant

Distance (in miles) between home coordinates
inferred using geo-tracking trajectories and each focal
restaurant across all restaurants

111.54

Trip distance
to the restaurant

Minimum past distance (in miles) between trip
coordinates and restaurant across all restaurant-weeks
for the week preceding the target prediction week

136.20

Notes: Geo-tracking data are used to infer trip distances weekly for all users for the previous week’s
driving (i.e., the week prior to the target prediction week). Geo-tracking data also contains latitude and
longitude trajectories for the previous week (Model 6). Web Appendix B reports the summary statistics for
additional features computed from geo-tracking data about users’ general driving behavior and mobility
patterns for the counterfactual analyses.
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female. The average population, white population, number of employed workers, number of

commuters, number of family households, and number of people with high school diploma are

4,339, 2,941, 1,998, 1,901, and 2,617 in the consumers’ census-block. The median household

income is $74,674. Finally, based on their home zip code, users live at an average distance of

149 miles from a restaurant in our data. These distances are averaged across all restaurants

in our data, which are located across Texas. For this reason, a user may live 2 miles from

a Starbucks in their neighborhood but could be 200 miles away from another out-of-town

Starbucks.

Behavioral Information. Behavioral information contains information about a consumer’s

past restaurant visits in relation to the focal restaurant for which we are making predictions.

This set comprises of three features, i.e., each user’s total number of past visits to the

focal restaurant, to other restaurants in the same category as the focal restaurant, and to

other restaurants of the same brand as the focal restaurant. We add this set of behavioral

information features to our set of demographic variables in Model 3.

To select the time period for computing past visits, we reserved the first half of our data

(i.e., weeks 1-30) in order to predict visits for each week starting week 31. In this approach,

past visits use the data from weeks 1-30 to predict for week 31, then weeks 1-31 to predict

for week 32, and so on. Thus, variables that constitute behavioral information include an

increasing number of weeks every week. We do this because restaurant managers are likely

to be able to access historical information on orders or reservations for repeated customers

who use their app or reservation system. As shown in Table 3, a customer in our data has

0.004 visits to the focal restaurant, 0.088 visits to a restaurants in the same category, and

0.032 visits to a restaurant of the same brand.

In our application, we identify visits from the geo-tracking data by combining them with

retail geometries. First, we define a stop as an instance when a driver is stationary. Based

on the data, we operationalize stops as time gaps of at least 10 but at most 120 minutes

when the driver is not on the move. Next, for each stop, we identify whether the location
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Figure 1: Restaurant Polygons in Our Data

Notes: The polygons are geometric boundaries available for each store using satellite imagery.

coordinates lie within a polygon defined by longitude-latitudes of each vertex of the physical

location. Examples of polygons of restaurants in Bryan/College Station, Texas appear as

shaded blue regions in the maps in Figure 1.

Our approach of identifying visits may not capture a fraction of the true visits to

restaurants that are adjacent to one another or when a restaurant is within another store

(e.g., Subway within Walmart). For this reason, we only use standalone restaurants in our

data. Similarly, if the last point recorded for a specific trip lays outside the polygon of a

restaurant, we would not identify this point as a visit if the user entered the restaurant just

after the last GPS point was recorded. In these cases, training the model with the resulting

data would lead to under-performance relative to a model trained with true visit data.

Geo-Tracking Information. Learning useful information from geo-tracking data to predict

consumers’ future restaurant visits is not a trivial exercise. First, geo-tracking data have

spatio-temporal richness but may also be very noisy. Second, using the entire trajectory of

consumer movement as inputs in our prediction models is computationally intensive and not

readily scalable. We deal with these challenges in multiple ways. First, we follow Pappalardo

et al. (2022) and use the latitude and longitude of geo-tracking data to identify the home

location for each user. We use the home location to calculate a user-restaurant specific
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“distance from home” measure (i.e., home-tracked distance to restaurant). Second, for each

user-week, we identify the minimum distance that the user was from each restaurant in

our data in the previous week (i.e., trip distance to restaurant). This covariate provides

additional information relative to home-tracked distance because it changes every week and

considers a user’s commuting during the training week relative to the focal restaurant’s

location. Restaurant managers often use these measures of how far consumers live and drive

from their location as heuristics. In Model 4, we next add these home-tracked and trip-

distances as geo-tracking features to our baseline demographics. Importantly, Model 4 uses

home location coordinates inferred from geo-tracking data rather than home zip codes. Next,

in Model 5, we add past behavioral information to Model 4. As shown in Table 3, users’

home-tracked distance is 111.54 miles averaged across restaurants and their trip distance

is 136.20 miles averaged across restaurant-weeks. Finally, in Model 6, we use latitude and

longitude of geo-tracking data as direct inputs in addition to home- and trip- distance metrics.

To illustrate the patterns captured by the geo-tracking data, the panel at the center of

Figure 2 presents a two-dimensional projection of our driving features in a multi-dimensional

space of our entire feature set (i.e., features described in Web Appendix B). Each point in this

projection represents a user. The shape of this visual is determined by the driving features,

but the points in the figure are color coded by one feature, i.e., minimum distance between

a user’s trips to the focal restaurant for a specific restaurant-week. The users represented by

purple dots have lower trip distances while those represented by pink dots have higher trip

distances. To illustrate these two types of patterns, we also show the heat maps of actual

driving for two users in di↵erent regions of the projections (Van der Maaten and Hinton

2008). Consider, for example, the user from the purple region of the plot on the left. This

user’s driving is concentrated in small geographical areas within Katy, Texas. In contrast,

the user from the pink region of the plot on the right has a higher trip distance, driving in

Killeen, Austin, and College Station within a week.
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Figure 2: Visualizing Geo-Tracking Data: Trip Distance

Empirical Strategy and ML Framework

In this section, we describe our ML framework to (a) train a model for predicting

consumers’ visits to a restaurant using our information sets, including demographic, behavioral,

and geo-tracking information, (b) evaluate the out-of-sample predictive performance, and

(c) undertake various counterfactual exercises that restrict geo-tracking and compare model

performance. Our ML framework appears in Figure 3.

As shown in our ML framework, we split the data both by time periods and users. The

time and user splits ensure that we train our model using a di↵erent time period for a

di↵erent set of users compared to the time period and users for which we predict the visits

(e.g., Lee, Yang, and Anderson 2021; Rafieian and Yoganarasimhan 2021).

The user separation in our ML framework ensures that the model is learning general

patterns during training and is less likely to overfit to the same users whose patterns it

learns. Specifically, we train our models using a random sample of 80% of our users in each

training period. We evaluate and report the predictive performance of the models estimated

for the 20% test users.
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Figure 3: Machine Learning (ML) Framework: Predicting Consumer Visits using
Demographic, Past Behavioral, and Geo-Tracking (Complete vs. Restricted) Information

Notes: In Step 1, we train an ML model using the information sets (i.e., combinations of
demographic, behavioral, and geo-tracking data described in Models 1-6 in Table 2) for the users
in the training sample for the training period. In Step 2, we evaluate the out-of-sample
performance using the data for the users in the test sample for the test period for the trained
model. In Step 3, we train counterfactual models under a hypothetical policy regime with
restricted geo-tracking. The approach we follow is the same as for the main model (i.e., Step 1
and Step 2) but we limit the extent of geo-tracking according to the policy under study (see
Section Counterfactual Policy Analysis). The training and test periods are defined using a
“rolling window” i.e., we compute and use geo-tracking information based on the first week to
predict the target visits in the second week, and then we use geo-tracking information based on
the second week to predict the target visits in the third week, and so on (consistent with Sun
et al. 2022’s rolling windows of past five weeks to predict next two weeks’ website visits).

The time separation in our ML framework ensures that we are not capturing contemporaneous

correlations between geo-tracked driving and visit behavior. For example, shorter driving

distances to a restaurant in a week likely entail more visits but may not be informative about

consumers’ preferences.

Overall, our data span 60 weeks. We reserve the first half of our data for computing

behavioral information on past visits (i.e., weeks 1-30). We use a rolling window for the

remaining periods (i.e., weeks 31-60) to make weekly predictions i.e., we use geo-tracking
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information week(t�1) to predict the visit for week(t). Thus, the time separation is between

each block of week(t�1) and week(t) for weeks 31-60. Note that the past behavioral information

uses the entire past period of weeks 1-30 as well as any weeks before the target week

for prediction to capture most recent visit behaviors (see details in the Section Features:

Demographic, Behavioral, and Geo-Tracking Information).

For our prediction models, we use standalone restaurants in Texas with non-zero visits

during weeks 31-60 by the users in our sample. To train our models, we need to have su�cient

visits in a given restaurant-week. For this reason, we select top restaurant-weeks that have

at least four visits, resulting in a set of 31 unique restaurants over 107 restaurant-week

combinations. The mean number of visits across the restaurant-weeks in our data is 9.74.

Model Training

Because we want to predict visits to a specific restaurant one week ahead, we train a

separate model for each restaurant-week and we evaluate the performance of the model on

the test users during the test week. To illustrate, the prediction from one specific model

estimation will give us the likelihood or probability that a user visits a specific restaurant

(e.g., MOD Pizza at 6622 Fannin St, Houston) in a given week. We discretize the predicted

probability to a visit or non-visit using a probability threshold of 0.50 and compare it with

our observed outcome to compute model performance metrics.9

One empirical challenge in our setting is the sparsity of the target outcome that our model

is predicting (i.e., our dataset has more non-visitors than visitors for each restaurant-week).

The challenge of imbalanced target outcome is common in many ML applications in marketing,

e.g., detecting fake reviews or detecting missed credit card payments as in cases of He

et al. (2022) and Lee, Yang, and Anderson (2021). To handle class imbalance, we follow

the oversampling strategies used in prior literature in marketing and computer science

for class-balancing before training our ML models (e.g., Lee, Yang, and Anderson 2021;

9We consider two alternative random thresholds, 0.68 and 0.39. Our results are robust to these alternative

thresholds and are reported in the Web Appendix Section Alternative Probability Thresholds.
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Mohammed, Rawashdeh, and Abdullah 2020).

Because a goal from our analysis is to quantify the predictive value of geo-tracking data

over and above demographics and behavioral information on past visits, we use various ML

algorithms, such as Extreme Gradient Boosting (XGBoost), Least Absolute Shrinkage and

Selection Operator (Lasso), Logit, and Random Forest. Because XGBoost has the highest

accuracy for our data, we report this model in the main results, and other models in the

Web Appendix Section Alternative Models. Importantly, the results from the other models

follow similar patterns as those from our main model XGBoost (Chen and Guestrin 2016).

Out-of-sample Evaluation

In the second step of our framework, we evaluate the performance of our trained ML

model. We do this in two ways. First, we compute the model performance metrics for each

model specification in Table 2 across restaurant-weeks. Second, we quantify the relative

predictive performance of models that use geo-tracking information (Models 4-6) over and

above using traditional metrics, such as demographic and behavioral information only (Models

1-3). To generalize our framework and comparisons of various information sets, we report

the average performance metrics across the restaurant-weeks.

Performance Metrics

We evaluate the predictive performance of our models using four commonly used metrics:

• Accuracy. Accuracy is the proportion of visits and non-visits that are correctly identified

as visits and non-visits by our model. Accuracy measures the total number of correctly

classified observations divided by the total number of observations.

• Recall. Recall is the proportion of correctly classified visits of the total number of visits

in the data. This metric is important in our setting because accuracy alone does not

reflect a higher proportion of correctly identified visits. With recall, we can trace how

many true visits were actually identified among all the observations in our data when
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there was a visit. It is the number of true positives divided by the sum of true positives

and false negatives.

• Precision. Precision is the proportion of correctly classified visits of the total number of

visits predicted by our model to be visits. With precision, we can trace how many true

visits were actually identified among all the observations our model predicts as being

positive. It is the number of true positives divided by the sum of true positives and

false positives. Note that precision will not be defined if the model does not identify

any instances as positives, since the sum of true positives and false positives in the

denominator is zero for such cases. We report precision conditional on at least one

positive prediction.

• F1. F1 is the harmonic mean of precision and recall. In practice, managers may care

about balancing both precision and recall because they want to accurately identify the

visits that they predict as being true as well as those that are actually true visits. Note

that F1 will not be defined if the model does not identify any instances as positives so

we report it conditional on at least one positive prediction.

F1 = 2⇤Precision⇤Recall
Precision+Recall

Bootstrapping Procedure

We use a bootstrap procedure to evaluate the di↵erences in predictive performance across

models. We implement this procedure by generating 50 bootstrap samples from the training

and test data with replacement for each restaurant-week combination in our data. For

each sample, we compute the accuracy, recall, precision, and F1 score for the models under

consideration. By doing this over the bootstrap samples, we can construct a distribution for

each measure of interest and model under consideration. We then use these distributions to

report the standard error for each metric.
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RESULTS: PREDICTIVE PERFORMANCE BY INFORMATION SET

In this section, we present the findings related to our first research objective: examining

the extent to which geo-tracking information improves the predictive performance of our

models relative to traditional metrics such as consumers’ demographics and past behaviors.

To do this, we compare the predictive performance across our four metrics (i.e., accuracy,

precision, recall, and F1 score) for the six information sets described in Table 2.

Table 4 reports the predictive performance of these models for the test data averaged

over the restaurant-weeks in our data. We first describe the results for the overall prediction

accuracy of each model, which is the percentage of correctly classified visits and non-visits

for each restaurant.

Table 4: Results: Predictive Performance of XGBoost Models for Various Information Sets

Model Accuracy Recall Precision F1

Model 1 68.50%
(1.12%)

56.47%
(0.84%)

75.17%
(2.61%)

62.39%
(2.19%)

Model 2 76.13%
(1.32%)

59.93%
(0.53%)

88.05%
(2.77%)

69.24%
(2.23%)

Model 3 76.70%
(1.30%)

60.44%
(0.50%)

89.14%
(2.70%)

69.97%
(2.24%)

Model 4 78.61%
(1.34%)

62.76%
(0.34%)

91.79%
(2.78%)

72.19%
(2.28%)

Model 5 79.07%
(1.34%)

63.57%
(0.34%)

92.05%
(2.78%)

72.86%
(2.27%)

Model 6 77.87%
(6.03%)

58.52%
(12.16%)

91.88%
(12.68%)

67.11%
(8.26%)

Notes: The table reports the mean and standard errors (in parentheses) produced from 50
bootstrap simulations for each of the four evaluation metrics using the test data.

As show in Table 4, Model 1 that uses only the baseline demographic information, such

as age, gender, and census block- level features has a mean accuracy of 68.50%. Model 2,

which adds home-zip code distances from each focal restaurant for which we are predicting,

has a mean accuracy of 76.13% and performs better than Model 1. Thus, adding zip-code
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level information about where consumers live relative to the restaurant’s location results in

an increase in accuracy of 11.14%. Model 3, which adds behavioral information on past

visits, performs similar to Model 2 with 76.70% accuracy.

Next, we discuss the model performance for Models 4 and 5 that include geo-tracking

information. Model 4 introduces home-tracked locations inferred from the geo-tracking data

to compute how far consumers live from the focal restaurant as well as trip distances of

how close they drove to the focal restaurant in the previous week. With this information,

Model 4 predicts visits with an average accuracy of 78.61%. Thus, using geo-tracking data

improves the prediction accuracy by 14.76% over Model 1 with only baseline demographics,

3.26% over Model 2 with demographics and home-zip code distances, and 2.49% over Model

3 with baseline demographics, home-zip code distances, and past behavioral information.

Model 5 uses the same geo-tracking inputs as Model 4 but adds behavioral information

to the model. Model 5 has an accuracy of 79.07%, which is 15.43% higher than Model 1 with

only baseline demographics, 3.86% higher than Model 2 with demographics and home-zip

code distances, and 3.10% higher than Model 3 with baseline demographics, home-zip code

distances, and past behavioral information (but no geo-tracking information). The gains

in prediction accuracy upon including geo-tracking information suggest additional value of

these data for predicting consumer visits.

While home and trip distance metrics in Models 4 and 5 provide a useful way to capture

geo-tracking features, they might miss additional information available in geo-tracked trajectories.

In Model 6, we use latitude and longitude of the user’s past week’s trips as inputs in addition

to the distance metrics. However, using geo-tracked coordinates in the analyses does not

improve predictive performance but increases the computational cost significantly. For this

reason, we use Model 5 as our preferred specification in the rest of the paper.10

10In addition, it is important to note that including the trajectory-level data not only results in worse and noisier

outcomes for all our metrics, but also that using distances based on the trajectory data allows us, and firms, to

compute these models significantly faster than what it takes to include the geo-coordinates. For example, while

estimating Model 4 or Model 5 takes a few minutes for each restaurant-week using an iMac computer with 3.6 GHz

8-core i9 and 64 GB 2667 MHz RAM, estimating Model 6 with latitude-longitudes takes 2+ hours per restaurant-week

in the same machine. Therefore, because using the trajectory-level data results in worse outcomes and require more
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While the inclusion of geo-tracking data in Models 4 and 5 improves the overall accuracy

of prediction, it is possible that the model with this information is simply predicting more

non-visits as non-visits, but not predicting the actual visits as such. To assess how our

models perform in identifying visits correctly as a proportion of the total observed visits,

we next examine the recall metric. Our preferred Model 5 has a recall of 63.57%, which is

12.57% higher than Model 1, 6.07% higher than Model 2, and 5.18% higher than Model 3.

The results for precision, which identifies how many of our predicted visits were indeed

visits, follows a similar pattern. Model 5 has a precision of 92.05%, which is 22.45% higher

than Model 1, 4.54% higher than Model 2, and 3.26% higher than Model 3.

Firms may also care about the balance between precision and recall metrics because

both precision and recall matter in practice. The F1 score takes the harmonic mean of

precision and recall. The F1 score is 16.78% higher for Model 5 relative to the Model 1 with

baseline demographics, 5.23% relative to the Model 2 with demographics and home-zip code

information and 4.13% higher relative to Model 3 with both demographic and behavioral

information.11

COUNTERFACTUAL POLICY ANALYSIS

The findings reported in the previous section showed that geo-tracking data are useful

when predicting future restaurant visits. However, these data also raise privacy concerns

because of the detailed knowledge that firms may gain from such data about their customers’

movement and locations. In this context, we now address our second research question: how

does restricting geo-tracking data under di↵erent types of privacy regulations impact the

predictive performance of models that use these data? This question is important from a

policy perspective because of the recent emergence of regulations that restrict data tracking

computing resources, we prefer specifications that use distance measures derived from the geo-tracking data rather

than using the geo-coordinates as inputs for our models.
11In Web Appendix Figure C1, we examine the variable importance scores of the di↵erent features and find that

trip distance (i.e., the average minimum distance between trips in the previous week and the focal restaurant of

interest), a geo-tracking feature, has the highest importance in prediction followed by home-tracked distance.
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(Klosowski 2021). If policymakers regulate consuser geo-tracking, for example, by requiring

data aggregation so firms cannot access coordinate-level data, imposing geographical restrictions

on where users are geo-tracked, or imposing age or recording frequency restrictions, how

would such restrictions impact the benefits of prediction from such tracking?

To answer this question, we outline an approach to quantify the extent to which alternative

privacy policies impact prediction performance. Recall that in Table 1, we motivated four

types of policy restrictions and ways in which they can be applied to geo-tracking data.

Next, we describe how we implement each of these policies in our setting.

User-level summarization. In the first category of counterfactuals, we consider policies

that require the data to be summarized at the user level rather than allowing firms to use

latitude-longitude geo-coordinate information. We implement a version of this following

Pappalardo and Simini (2018). We use the raw coordinates for each user to construct

summary features for each user-week that we use in the prediction models instead of raw

geo-coordinates, or exact home and trip information. These summary features contain

aggregated information about a user’s driving behavior in a week, such as the total distance

traveled, entropy (i.e., variability of the locations visited), time of driving, number of days

driven, and number of trips each week. Note that these features are independent of the focal

restaurant’s location and capture general mobility patterns about a user in a privacy-preserving

way (e.g., Macha et al. 2023). The technical details and summary statistics of these features

appear in Web Appendix B: User-level Summarization of Geo-Tracking Data: Technical

Details. Under this counterfactual, we re-estimate Model 5 with these summary features

instead of the home-tracked and trip distances from the focal restaurant.

Geographical restrictions. In the second category of counterfactuals, we explore how

geographical restrictions impact prediction outcomes. We implement this counterfactual

using geofences that restrict firms to observe only those trips that take place within 10

miles of their location. Any trip that takes place outside this distance is therefore not

observable to the firms and is excluded from our counterfactual prediction model. Under this
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counterfactual, we re-estimate Model 5 with using these geographically restricted geo-tracking

data.12

Age restrictions. In the third category of counterfactuals, we consider policies that restrict

who may be tracked, i.e., prevent tracking of user below a certain age. Because our data

comes from a safe-driving app, we implement a counterfactual in which firms are restricted

to use data of users who are over 21 years old. Under this counterfactual, we re-estimate

Model 5 only for those users who are 21 and above.

Frequency restrictions. In the fourth category of counterfactuals, we consider policies

that restrict how often users may be tracked, but still allow firms to use the data at the

coordinate level. In practice, we consider policies that record the data less often than what

our focal app does. We implement two versions of this.

In the first version, we keep the first point of each trip but systematically drop the

data within a trip. Specifically, we re-construct the geo-tracking data at lower frequencies,

assuming they are collected at 1/2, 1/3, and 1/10 frequency of the original three-minute

interval with which our data provider records the data. We also implement a variation that

keeps the overall amount of data the same as the 1/2 geo-tracking frequency, but drops data

at random rather than systematically. These exercises are meant to represent choices firms

might make about temporal granularity when deciding how often to record and store data.

In the second version, we implement counterfactuals that reduce geo-tracking frequency

in ways that replicate static geo-tracking policies. These exercises are meant to represent

scenarios in which users may enable tracking at specific moments, for example when they

want to use a location-based service at a point of interest, or at specific moments during a

trip when they check a navigation app. In practice, we consider two policies that di↵er along

this dimension. In the first one, we record the first and last points of a trip, and drop all

other records. In the second one, we record data for one random trip per user-week, keep all

12In practice, businesses could use smaller geofences around their store locations. We also implemented another

version of this counterfactual with a one-mile radius instead of 10 miles. The predictive performance of the models

reduces to 63.44% accuracy, which is lower than our baseline Model 1 with only demographics. This is likely due to

both home- and trip- distances, which play an important role in predictions, being inaccurate for very small geofences.
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records of it, and drop any other trips that week.

Under each of the policy restrictions, we re-estimate our preferred model, Model 5, using

restricted geo-tracking data for both the training and test users.

Results: Counterfactual Analyses under Varying Restrictions on Geo-Tracking

Table 5 presents our findings for the counterfactual analysis. In each counterfactual, we

report the results for Model 5 after re-estimating it using restricted geo-tracking data.

Our findings show that all the restrictions that we impose result in lower prediction

accuracy than the accuracy of our preferred Model 5 with complete geo-tracking. However,

we also find that even under various policy restrictions, models with geo-tracking information

generally perform better than or similar to the specifications that do not use geo-tracking

information at all. Below we describe the results for each of our policy counterfactuals.

First, we find that policies that force the summarization of geo-tracking data at the

user-level result in the largest decrease in predictive performance relative to our preferred

Model 5. While Model 5 has an accuracy of 79.07%, the model with user-level summarization

has an accuracy of 67.88%, which compares to the performance of models that uses only

baseline demographics (Model 1 in Table 4). The decreased accuracy under user-level

summarization highlights that what geo-tracking data can be collected and used is an

important consideration when predicting customers’ visits one week ahead.

Second, policies that restrict firms to only observe data within 10 miles of their locations,

result in the second largest decrease in prediction accuracy. While Model 5 has an accuracy

of 79.07%, the model with geographical restrictions has an accuracy of 70.46%. However,

even in this case, geo-tracking data are useful when predicting customer visits relative to a

context in which these data are not available at all.

Third, age-based restrictions that prevent firms from geo-tracking younger users does

not result in substantial changes in prediction accuracy. Note, however, that because of the

nature of our data (i.e., driving), most app users are adults and by restricting to users who
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Table 5: Results of the Counterfactual Analyses: Predictive Performance of Models under
Restricted Geo-Tracking Data

Counterfactual Accuracy Recall Precision F1

Complete geo-tracking (Model 5 in Table 4) 79.07%
(1.34%)

63.57%
(0.34%)

92.05%
(2.78%)

72.86%
(2.27%)

User-level summarization

User-level summary features instead of geo-tracking 67.88%
(0.14%)

51.75%
(0.24%)

76.05%
(0.20%)

59.73%
(0.26%)

Geographical restrictions

Geofenced trips within 10 miles of the restaurant 70.46%
(0.61%)

53.62%
(1.28%)

80.86%
(1.02%)

62.58%
(1.26%)

Age restrictions

Users over 21-year old only 75.79%
(0.12%)

55.59%
(0.24%)

93.15%
(0.20%)

67.75%
(0.26%)

Frequency restrictions

Reduced frequency of geo-tracking

1/2 frequency 75.53%
(0.16%)

57.04%
(0.32%)

90.66%
(0.29%)

67.67%
(0.30%)

1/3rd frequency 77.21%
(0.25%)

59.39%
(0.48%)

92.53%
(0.33%)

70.15%
(0.20%)

1/2 frequency at random 76.59%
(0.19%)

57.98%
(0.37%)

92.31%
(0.29%)

69.07%
(0.34%)

1/10th frequency 75.43%
(0.19%)

56.77%
(0.39%)

90.66%
(0.27%)

67.53%
(0.30%)

Static geo-tracking

First- and last-trip points only 77.04%
(0.21%)

59.48%
(0.42%)

91.48%
(0.26%)

69.48%
(0.21%)

One trip per week at random only 75.16%
(0.21%)

51.21%
(0.41%)

98.49%
(0.11%)

67.36%
(0.28%)

Notes: The main model specification includes demographics, behavioral, and geo-tracking data (i.e.,
Model 5 of Table 4). The table reports the mean and standard errors (in parentheses) produced from
bootstrap simulations for each of the four evaluation metrics using the test data under each
counterfactual scenario.
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are over 21 years old, our model still has access to the data for almost 70% of our users.

Fourth, we consider counterfactuals that restrict the frequency with which geo-tracking

data are recorded including reduced frequency and static geo-tracking at specific times only.

Across all these specifications, we find that the predictive performance of our model decreases

relative to when all the data is available. Specifically, the prediction accuracy of models under

frequency restrictions ranges from 75.16% to 77.21% in our data. However, the changes are

relatively small and the models generally perform better than when geo-tracking data are

not available at all.

Overall, our results suggest that ML models perform remarkably well even in settings

where geo-tracking data are collected at longer intervals or restricted by users’ age. In these

cases, the loss in predictive accuracy ranges from 4.14% for age restrictions to 2.35-4.94% for

frequency restrictions. We also find that, in our context, policies that restrict the geography

within which businesses can collect data or that aggregate geo-tracking data to produce

summaries of driving behaviors at the user-level, result in the largest decreases in predictive

performance, which compares to that of models that do not user geo-tracking information

at all. In these cases, the loss in predictive accuracy ranges from 10.89% under geographical

restrictions to 14.15% under user-level summarization.

ROBUSTNESS CHECKS

Alternative Machine Learning Models

While our main models use an XGBoost machine learning algorithm, we also estimate

alternative models, such as Logit, Random Forest, and Lasso to make sure the results are

not specific to the type of model we use. Since our main interest is in comparing various

information sets, we repeat the specifications reported in the main results in Table 4 and

report their results for alternative models in the Web Appendix Section Alternative Models.

The findings are consistent with those reported in the previous section.
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Alternative Time Periods

Our main model uses previous one week’s geo-tracking information to predict one week

ahead. However, restaurant managers may be interested in making farther out predictions

for the next two or three weeks. In the Web Appendix Section Alternative Time Periods we

report the outcome for predicting restaurant visits two- and three- weeks ahead. We also

report the results of models that use a longer period of past 12 weeks instead of past one

week of geo-tracking data. The results for these various temporal choices are consistent with

the ones reported in the previous section.

Alternative Metrics

Our main results allow us to compare the accuracy and other performance metrics

of various information sets (e.g., demographic, behavior, and geo-tracking information).

However, they are less informative about which specific features within each set have higher

predictive power. We compute the importance scores for the features in our preferred

Model 5, and report them in Web Appendix Figure C1. The plot shows that the minimum

weekly distance between the users’ trips in the past week to the focal restaurant has the

highest importance score. This is next followed by their home distance to the restaurant.

Together, these two features have the highest predictive power followed by other behavioral

and demographic features, including the ACS census block data. We also report the receiver

operating characteristic (ROC) curve in Figure C2 to visually compare our models. The

ROC curve plots true positive rate against the false positive rate at various thresholds. The

greater the area under the curve, the higher is the overall predictive performance. This plots

also shows that the models with geo-tracking information (purple and red dashed lines)

outperform the models without it.
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Outlier Drivers

It is possible that some users in our data may be restaurant delivery drivers or commercial

taxi drivers. Such drivers are likely to have higher than typical levels of driving distances.

To make sure our prediction results are not driven by learning these outlier drivers’ patterns,

we drop any user with driving distances of more than mean plus three times the standard

deviation, and re-estimate our prediction model after excluding them. The results appear in

Web Appendix Section Outlier Drivers and are consistent with those we reported earlier.

CONCLUSION

In recent years, many firms have started collecting geo-tracking data about consumers

and using these data to inform their marketing and operational decisions (Cli↵ord 2018).

However, geo-tracking evokes privacy concerns among app users and regulators. For example,

companies like Tim Hortons have attracted public scrutiny due to their geo-tracking practices

(Austen 2022). Many emerging privacy regulations, such as the California Privacy Rights

Act treat consumer location as sensitive data and restrict geo-tracking.

In this research, we examined two questions: First, to what extent are geo-tracking data

useful relative to demographics and behavioral information for predicting consumers’ future

visits to a restaurant? Second, how does restricting geo-tracking data under various privacy

policies impact the usefulness of these data in terms of their predictive performance?

We answered our research questions in the context of the restaurant industry using one

application we identified through in-depth interviews with managers (Web Appendix Section

Managerial Interviews), i.e., predicting consumers’ visits to a restaurant one week ahead.

Specifically, we used proprietary data from a safe-driving app in Texas with 120 million

driving instances for 38,980 individual users to make predictions for the restaurant-weeks

in our sample using a machine learning (ML) framework. From our interviews, we learned

that predictions at a weekly frequency can allow managers to make better decisions about
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personnel and sta�ng (e.g., shifts), to plan weekly promotions, and to customize the restaurant

experience. While the potential usefulness of geo-tracking data for businesses depends on

the application under study, we focused on weekly prediction of visits, consistent with Sun

et al. (2022) who predict consumers’ online visits and purchases in future weeks as well.

Our research has several key results. First, we find that using geo-tracking data increases

prediction accuracy by 3.1% when compared with using detailed demographic and behavioral

information on past visits, and by 14.8% when considering only baseline demographics that

do not include any location information. Second, imposing privacy restrictions that limit

what geo-tracking data are tracked, which users are tracked, and where and how frequently

users are tracked reduces the usefulness of geo-tracking for prediction by 2.35-14.15% relative

to complete geo-tracking. Third, the extent of the decrease in predictive performance varies

by the type of policy. Specifically, policies that restrict what data are geo-tracked (i.e.,

user-level summary of driving behaviors rather than geo-coordinates) and where where users

are geo-tracked (i.e., within a few miles of a business location) are associated with the

largest decreases in predictive performance and lead to a similar performance as that of

models that do not use geo-tracking data. However, ML models perform remarkably well in

our application even when geo-tracking data are collected with reduced tracking frequency

or only for users above a certain age. Finally and importantly, models that use restricted

geo-tracking still generally outperform models that do not use any geo-tracking information.

Managerial Implications

Our results have several implications for managers. First, our finding that geo-tracking

data significantly improve the ability to predict consumers’ visits each week implies that

managers may be better o↵, when possible, by collecting and using these types of data to

predict consumers’ future actions.

Second, our finding that using geo-coordinates directly as input does not improve the

model performance relative to models that use these data to infer distance measures implies
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that managers may not need to use detailed coordinate data and may focus on specific

informative aspects of the data. Our finding is consistent with Sun et al. (2022), who find

that using each location in a trajectory as a model input is less useful for predicting web

visits than using less detailed information, such as categories of locations.

Third, our finding that using user-level summaries of driving behaviors results in lower

prediction performance relative to using sensitive geo-coordinates, home- and trip- distance

metrics, or even simply baseline demographic information implies that protecting consumers’

privacy through these types of restrictions comes at a higher predictive cost for managers

relative to other forms of restrictions.

Finally, our finding that models that use restricted geo-tracking data under various

counterfactual policies still generally perform well suggests that collecting some geo-tracking

information, even when restricted by policy or practical considerations, may be better for

prediction purposes than not collecting these data at all. In fact, restricted geo-tracking could

allow managers to manage these considerations while still getting the benefits of using such

data for prediction. For example, managers could collect data lower frequency intervals using

the first and last points of consumers’ trip only, but still be better o↵ than no geo-tracking

at all while also saving in data storage and server costs.

Limitations and Future Research

Our research has limitations that future research can address. First, many restaurants use

geo-tracking data to make real-time predictions. Our ML framework predicts visits one week

ahead using the previous week’s data for a di↵erent set of training users. Future research may

address real-time predictions under privacy restrictions, e.g., for targeting mobile coupons.

Second, we acknowledge that the potential usefulness of geo-tracking data for businesses

depends on the application under study. Our paper is able to speak to one application, which

uses geo-tracking information from one week to predict customers’ visits to a restaurant in

the subsequent week. If data are available, future research can extend the usefulness of
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geo-tracking in other contexts and for other applications of interest. Given the heightened

concerns with using personal consumer data, firms may also prefer to use such data in

situations where it advances consumer interest, which is another potential avenue for future

research (Soleymanian, Weinberg, and Zhu 2019).

Third, while we examine counterfactual policies drawn from the current policy landscape

and privacy literature, there may be other regulations of interest we are not able to study.

For example, most app users in our setting are above the age of 13, so we cannot comment

on privacy protection for children. Future research, if data are available, can specifically

examine these additional important policies.
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WEB APPENDIX A

MANAGERIAL INTERVIEWS

Table A1: Managerial Responses on How Predictions of Consumer Visits May be Useful,
the Consumer Information they Collect/Wish to Collect, and at what Time Intervals

Manager Role Experience Gist of Interview Responses

Manager
Jimmy John’s (JJ)

5 years

Predicting consumer visits every week would help us with
sta�ng and figuring out if we’re oversta↵ed or understa↵ed.
We can’t fill sta�ng gaps immediately, so we receive sta↵
applications on a weekly basis and look at their availability
for the week. Customer demographics are important and will
also tell us where our customers reside. Our app asks for an
address for delivery, so we know how close customers live to
JJ’s store. Knowing consumers’ location and visit patterns to
other restaurants could help us target ads. I wouldn’t prefer
to keep data for more than a few weeks or six months at most
to not alarm customers.

Manager
Asian restaurant in Chicago

2-3 years

At our small Chinese restaurant in Chicago, we collect
demand data and customer visits. A prediction algorithm
that can tell us how likely a customer is to visit us each
week would be helpful. This would help us to know who
is coming and how often, which would allow us to plan and
manage our resources e↵ectively. Knowing what kind of food
our customers like based on their past visits and/or to other
restaurants also helps us make better decisions.

Manager and Chef
Culvers’ and Red Lobster

3+ years

It [predicting customer visits] would reduce costs greatly. If
you can predict how many people are likely to visit and
maybe even which meals they will need, you can plan which
ingredients to order, or how much sta↵ to hire. In my
experience, you’d have half of the sta↵ fulltime and half of
the sta↵ part-time. Schedules get set typically on Fri/Sat for
the following week. Knowing how many customers to expect
the following week can reduce cost, increase profits, and help
manage all of those without waste. It would also be useful to
see how many are local vs. out-of-town customers. Are they
mostly going to be coming in for mornings or afternoons, then
you could have specials around those meals and times instead
of all day deals. Or even a special deal of the week.

Food Administrator
University Dining Services

27+ years

If a prediction algorithm used data specific to my restaurant
to make predictions about my consumers’ visits, I would use
it to make decisions. It would be important to ensure that
the algorithm considers factors, such as the demographics and
needs of our customers. However, I would not rely solely
on the algorithm as it is important to stay in touch with
what customers want. In terms of the frequency at which
I would like to predict consumer visits, I would say weekly
would be the most useful. This would help me to tailor our
o↵erings and marketing strategies to better meet the needs of
our customers.

i



Manager Role Experience Gist of Interview Responses

Owner, Three fine-dining
restaurants in Atlanta

20+ years

I’d love to see the data on who comes back to our restaurant
for repeat service. If I knew how many customers (and who)
is coming, I can prepare my restaurant and work towards
satisfying them, e.g., if I have mostly female or non-binary
customers, or where they come from, maybe their relationship
status. More detailed information about our customers
is incredibly useful when it comes to satisfying them and
growing our business. However, we also need to be careful
not to overload ourselves by trying to predict customer visits
every single day or by collecting too much data about them.
It might be better to focus on weekly predictions, so that
we can plan and make sure we are ready to provide the best
possible experience for our customers. It can also help us
plan ingredients, sta�ng, and store locations i.e., where to
locate based on what kind of demographics and competitors
are there and what information we have on them.

Manager
Chilli’s

18 months

The data I’d really be interested in is repeat customers. POS
systems don’t really track that and not everyone has rewards
programs (or joins one). It would also be useful to know
how many people are likely to come in and overlap that with
community events they plan to ahead. Demographics about
customers can also help look at trends about who they are,
whether they are visiting if they are more proximate, how
far they’d travel for a restaurant etc. Monthly predictions are
fine, but for some decisions, weekly or more regular data could
also help especially for scheduling. For example, if you know
Thursday is going to be busy for family customers, hopefully
you can increase your customer accounts too, you can move
people in and out faster. If they can come and go quickly, it
will improve the customer experience.

Hostess
Restaurant in Chicago

2 years

A prediction algorithm that can tell me how likely a customer
is to visit my restaurant would be very helpful. I could use this
information to adjust sta�ng schedules, move tables around,
and plan weekly specials. I could also use it to determine
when to promote happy hour specials and other promotions on
social media. I would like to be able to predict consumer visits
on a weekly basis. This is because most decisions, including
sta�ng, scheduling, and social media marketing as well as
ordering supplies are planned on a weekly basis.

Manager
Crosby’s Kitchen in Chicago

15+ years

The most important decisions I make are hiring and customer
service. Predicting consumer visits can help because the
problem is that sometimes it’s slow and sometimes it’s busy.
I don’t like to over or understa↵. So I’d like to know the
predictions a week in advance. Sometimes also a month in
advance because other people I work with have lives outside
the restaurant, but usually a week is fine.

Notes: The interviews were conducted after securing Institutional Review Boards (IRB) approval.
Managers were recruited through a research database at a large public university. The only inclusion
criterion was some experience in the restaurant industry in the U.S. Each interview lasted about 30
minutes via zoom. We include restaurant name and location only if the managers agreed to share it.
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WEB APPENDIX B

USER-LEVEL SUMMARIZATION OF GEO-TRACKING DATA:
TECHNICAL DETAILS

We follow Pappalardo and Simini (2018) to extract mobility patterns for the users in our
data from their geo-coordinates. Because coordinate-level data may be considered sensitive,
and policy makers may restrict its use, in our counterfactuals we explore how summarizing
these raw data at the user-level without revealing exact locations might perform when
used as inputs in our analyses. Because human mobility follows remarkably consistent
patterns (Gonzalez, Hidalgo, and Barabasi 2008), using aggregated data rather than the
geo-tracking data does not mean necessarily mean that our predictive performance will
be hurt. To implement this approach, we rely on the DIary-based TRAjectory Simulator
(DITRAS) framework (Pappalardo and Simini 2018). This framework separates the temporal
characteristics of human mobility from its spatial characteristics. It turns mobility data into
a diary generator represented as a Markov model, which we can use to generate features of
interest.

Next, we describe the features that we compute at the user-week level to summarize
geo-tracking data, following Pappalardo and Simini (2018)’s feature set. The first set of
features relate to the randomness of consumers’ driving trajectories. This is important
because as the randomness of driving behavior increases, the likelihood of an algorithm to
be able to learn from past information to predict future visits decreases. Consumers whose
driving patterns have lower degree of randomness may be driving similar routes, e.g., they
may have the same commute from home to work. As a result, they may be exposed to the
same set of restaurants along their route. However, those with higher degree of randomness,
e.g., who may be driving out of town more frequently, may be exposed to a di↵erent set of
routes and restaurants more. Thus, capturing the randomness in driving patterns can be
informative of visitation decisions.

We use three measures of randomness: random, uncorrelated, and real entropy based on
the mobility literature. Entropy is the informational value of past driving behavior when
trying to predict future behavior (Pappalardo and Simini 2018). Random entropy measures
the uncertainty of an individual’s next location assuming that this individual’s movement is
completely random among N possible locations (Wang, Wu, and Zhu 2019). Uncorrelated
entropy captures the heterogeneity of locations visited by the user. Real entropy additionally
accounts for the order in which di↵erent locations are visited by users and their time spent
at each location, thus capturing the user’s full spatio-temporal mobility (Song et al. 2010).

The second set of features computed from geo-tracking data relate to how much the app
users drive. We take this into account by computing the radius of gyration, which is the
characteristic distance traveled by the driver (Gonzalez, Hidalgo, and Barabasi 2008). The
radius of gyration allows us to identify how far consumers typically drive, thus providing
useful information related to each consumer. In addition to trajectory-based characteristics,
we also capture the overall number of days on which a consumer drives, how many coordinates
lie along their trip routes, and the maximum distance they traveled away from the focal
location where they spend most time during the training period.

Finally, we focus on the specific characteristics of each trip, for example, the number of
quick stops (of  10 minutes) and long stops (of � 60 minutes, Hoteit et al. 2014). We
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also include a measure of the proportion of trips completed by a user in various windows of
time to account for specific time-of-day e↵ects, and the average number of trips per week
(Pappalardo and Simini 2018). The summary statistics of these features at the user-week
level appear in Table B1.

Next, we describe the technical details of computing these features. Human mobility
tends to display a great degree of spatial and temporal regularity. Driving points that follow
a spatial distribution of displacements over all the users can be well approximated by a
truncated power-law with random walk pattern of step size �r (Gonzalez, Hidalgo, and
Barabasi 2008).

Pr(�r) = (�r +�r0)
�� exp(

��r

k
) (1)

where � = 1.75 ± 0.15, �r0 = 1.5km, and cuto↵ distance of k|D1 ⇡ 400km and k|D2 ⇡ 80km.

Table B1: Summary Statistics of DITRAS Features of Geo-Tracking Data

Feature Description Mean

Random entropy Variability of a user’s visited locations if each location
is visited with equal probability

5.814

Uncorrelated entropy Variability of a user’s visited locations based on
probabilities of past visits

0.99

Real entropy Variability of a user’s visited locations based on
probabilities and order of past visits

5.692

Radius of gyration (miles) Characteristic distance traveled by a user 40.484

Unique days Average no. of unique days of driving 3.77

Locations Average no. of unique points in a user’s trip trajectory 80.11

Max distance (miles) Maximum distance traveled by users from their home 109.11

Short stops No. of stops of 10 minutes 14.30

Short stops at restaurants No. of stops at restaurants for 10 minutes 1.776

Short stops at unique restaurants No. of stops at unique restaurants for 10 minutes 1.395

Long stops No. of stops for �60 minutes 7.851

Long stops at restaurants No. of stops at restaurants for �60 minutes 0.760

Long stops at unique restaurants No. of stops at a unique restaurants for �60 minutes 0.585

Morning driving Proportion of trips in the morning (before 11am) 0.33

Afternoon driving Proportion of trips in the afternoon (11am to 5pm) 0.33

Evening driving Proportion of trips in the evening (after 5pm) 0.34

Trip frequency Average number of trips by a user 12.04

Notes: The summary geo-tracking features are computed for all users using their raw geo-coordinates each
week. The reported numbers are averaged over all the user-weeks. The number of stops at unique
restaurants are computed as the count of unique restaurants a consumer stops at, e.g., if a consumer stops
at twice at the same Pizza Hut location and once at a Starbucks location, the number of stops at unique
restaurants will be two. DITRAS = DIary-based TRAjectory Simulator.
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1. Radius of gyration:

By this formulation, human motion follows a truncated Levy flight random walk with
a probability distribution that is heavy-tailed. We can recover the radius of gyration,
the characteristic distance travelled by user a when observed up to time t, as follows:

rag(t) =

vuut1na
c

na
cX

i=1

⇣�!
rai ��!

racm
⌘2

(2)

where
�!
rai represents the i = 1, 2, .., na

c(t) positions recorded by user a and
�!
racm is the

center of mass of the trajectory.

2. Entropy:

Entropy is a measure of variability in a users’ mobility. We compute three types of
entropy: random, uncorreleted and real entropy (Song et al. 2010).

(a) Random entropy captures the degree of predictability of the user’s whereabouts
if each location is visited with equal probability.

Srand
i = log2 Ni (3)

where Ni is the number of distinct locations visited by user i,

(b) Uncorrelated entropy captures the degree of predictability of the user’s whereabouts
taking into account past visitation patterns.

Sunc
i = �

NiX

j=1

p (j) log2 pi (j) (4)

where p (j) is the historical probability that location j was visited by user i
characterizing the heterogeneity of visit patterns.

(c) Real entropy captures the degree of predictability of the user’s whereabouts taking
into account past visitation patterns as well as the order in which a user visits a
location. It captures the full spatiotemporal order in a user’s mobility pattern.

Sreal
i = �

X

T
0
i⇢Ti

P
⇣
T

0

i

⌘
log2

h
P

⇣
T

0

i

⌘i
(5)

where P
⇣
T

0
i

⌘
is the probability of finding a particular time-ordered sub sequence

and T
0
i in the trajectory Ti.

Ti = {X1, X2, X3, .., XL} (6)

which denotes the sequence of locations at which user i was observed at each time
interval.
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WEB APPENDIX C

ROBUSTNESS CHECKS AND ADDITIONAL ANALYSES

In this section, we present the robustness checks for alternative models, alternative time
periods, outlier drivers, alternative probability thresholds, and alternative metrics. The
tables report the Models 1-5 described in Table 2. Model 6 using geo-coordinates has worse
performance than Model 5 and is computationally expensive, so we do not include it in these
exercises.

Alternative Models

In this section, we present the main results using alternative models instead of XGBoost.

Table C1: Predictive Performance of Logit Models by Information Set

Model Accuracy Recall Precision F1 Score

Model 1 66.97% 56.70% 71.59% 61.77%

Model 2 74.09% 62.36% 82.04% 68.86%

Model 3 76.45% 62.69% 86.66% 70.33%

Model 4 78.16% 64.07% 89.33% 72.24%

Model 5 77.75% 62.70% 90.57% 71.28%

Table C2: Predictive Performance of Random Forest Models by Information Set

Model Accuracy Recall Precision F1 Score

Model 1 69.01% 53.71% 76.55% 61.26%

Model 2 74.50% 56.63% 87.79% 66.47%

Model 3 76.84% 61.70% 87.79% 70.18%

Model 4 78.72% 63.33% 91.07% 72.37%

Model 5 79.15% 64.02% 91.38% 72.99%

Table C3: Predictive Performance of Lasso Models by Information Set

Model Accuracy Recall Precision F1 Score

Model 1 67.35% 57.03% 72.06% 62.08%

Model 2 74.82% 64.77% 82.10% 70.06%

Model 3 78.16% 65.60% 87.49% 72.68%

Model 4 81.40% 71.18% 89.85% 76.85%

Model 5 79.82% 66.73% 90.56% 74.17%
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Alternative Time Periods

In this section, we present the main results for predicting visits two- and three- weeks
ahead instead of one, and using past 12 week’s geo-tracking instead of previous one week.

Table C4: Predictive Performance of XGBoost for Predicting Visits in the Next Two
Weeks using the Previous Week’s Geo-Tracking

Model Accuracy Recall Precision F1 Score

Model 1 66.28% 53.82% 71.91% 59.45%

Model 2 77.64% 64.96% 86.50% 72.17%

Model 3 78.24% 65.54% 87.49% 72.69%

Model 4 79.38% 65.23% 90.91% 73.45%

Model 5 79.16% 64.81% 90.81% 73.05%

Table C5: Predictive Performance of XGBoost for Predicting Visits in the Next Three
Weeks using the Previous Week’s Geo-Tracking

Model Accuracy Recall Precision F1 Score

Model 1 65.98% 55.88% 69.95% 59.81%

Model 2 76.30% 63.36% 85.08% 70.39%

Model 3 76.73% 63.31% 86.03% 70.70%

Model 4 79.18% 66.01% 89.67% 73.27%

Model 5 79.28% 66.26% 89.67% 73.46%

Table C6: Predictive Performance of XGBoost for Predicting Visits in the Next One
Week using Previous 12 Weeks’ Geo-Tracking

Model Accuracy Recall Precision F1 Score

Model 1 68.50% 56.47% 75.17% 62.39%

Model 2 76.13% 59.93% 88.05% 69.24%

Model 3 76.70% 60.44% 89.14% 69.97%

Model 4 77.87% 61.70% 91.03% 71.12%

Model 5 78.01% 61.79% 91.24% 71.24%
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Outlier Drivers

Table C7: Predictive Performance of XGBoost for Predicting Visits after Excluding
Outlier Drivers

Model Accuracy Recall Precision F1 Score

Model 1 66.95% 51.58% 75.23% 59.44%

Model 2 75.10% 57.16% 88.88% 67.68%

Model 3 76.41% 59.15% 90.18% 69.53%

Model 4 77.76% 60.50% 92.52% 70.59%

Model 5 77.64% 60.16% 92.44% 70.39%

Alternative Probability Thresholds

Table C8: Predictive Performance of XGBoost for Predicting Visits using Alternative
Threshold Probability of 0.68

Model Accuracy Recall Precision F1 Score

Model 1 64.11% 56.47% 75.17% 62.39%

Model 2 75.29% 59.93% 88.05% 69.24%

Model 3 75.99% 60.44% 89.14% 69.97%

Model 4 77.81% 62.76% 91.79% 72.19%

Model 5 77.83% 63.57% 92.05% 72.86%

Table C9: Predictive Performance of XGBoost for Predicting Visits using Alternative
Threshold Probability of 0.39

Model Accuracy Recall Precision F1 Score

Model 1 68.15% 56.47% 75.17% 62.39%

Model 2 75.99% 59.93% 88.05% 69.24%

Model 3 76.53% 60.44% 89.14% 69.97%

Model 4 78.82% 62.76% 91.79% 72.19%

Model 5 79.29% 63.57% 92.05% 72.86%
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Alternative Metrics: Variable Importance and Area under the Curve

Figure C1: Variable Importance Plot for Model 5 Across Restaurant-Weeks

Figure C2: ROC Curves

Note: The area under the curve (AUC) metrics for Models 1-5 (described in Table 2) are 0.711,
0.788, 0.790, 0.809, and 0.807 respectively. Model 1 uses baseline demographics with no location
information. Models 4 and 5 with geo-tracking information have a similar performance along the
ROC curve and are generally superior to Models 1-3.
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WEB APPENDIX D

CATEGORIZATION OF RESTAURANTS

Table D1: Categories of Restaurants using Yelp API

Categories Description Popular tags

1 American Restaurants serving American
cuisine, but excluding restaurants
specializing in burgers and
sandwiches, and excluding
restaurants that were also tagged as
another type.

American (Traditional),
American (new), breakfast,
brunch, chicken wings, diners

2 Asian Restaurants specializing in cuisines
from south Asian, east Asian, and
southeast Asian countries, as well as
pacific islands.

Chinese, Japanese, sushi bars,
Asian fusion, Thai, Indian,
Hawaiian

3 Burgers Restaurants with tag “Burgers”. Burgers, hot dogs, sports bars,
Steakhouses

4 Co↵ee Restaurants with tag “Co↵ee”. Tea, co↵ee, café

5 Dessert Restaurants with tag “Dessert”. Dessert, frozen yogurt

6 European Restaurants specializing in Italian,
French, or other European cuisines,
except for restaurants also tagged
“Pizza”.

Italian, French, Irish, Wine
Bars, Noodles, Mediterranean

7 Latin
American

Restaurants specializing in cuisines
from south and central America and
the Caribbean.

Mexicana, Tex-Mex, Lat́ın
American, seafood, Caribbean,
Cuban

8 Pizza Restaurants with tag “Pizza”.
Pizza, Italian, salad

9 Sandwiches Restaurants with tag “Sandwiches”,
“Deli”, or “Cheesesteaks”.

Sandwiches, deli, cheesesteaks

10 Other Restaurants not tagged as any of the
above categories.
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