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Does Strategic Ability Affect Efficiency? 
Evidence from Electricity Markets†

By Ali Hortaçsu, Fernando Luco, Steven L. Puller, and Dongni Zhu*

Oligopoly models of price competition predict that strategic firms 
exercise market power and generate inefficiencies. However, 
heterogeneity in firms’ strategic ability also generates inefficiencies. 
We study the Texas electricity market where firms exhibit significant 
heterogeneity in how they deviate from Nash equilibrium bidding. 
These deviations, in turn, increase the cost of production. To explain 
this heterogeneity, we embed a cognitive hierarchy model into a struc-
tural model of bidding and estimate firms’ strategic sophistication. 
We find that firm size and manager education affect sophistication. 
Using the model, we show that mergers which increase sophistica-
tion can increase efficiency despite increasing market concentration. 
(JEL D24, D43, G34, L13, L25, L94)

Firms that compete against one another can be quite different. Even if they 
compete in the same market, firms can vary across a number of dimensions:  corporate 
structure, production capacity, market experience, and general core competency. 
Moreover, the managers who develop corporate strategy differ as well. For any 
particular market, a quick scan of resumes of firm managers often reveals differ-
ences in the type of academic training, the years of job tenure, and previous job 
experience. These differences could cause firms to adopt different types of strate-
gic behavior when they compete against one another.

However, the potential existence of heterogeneity in strategic behavior does not 
play a role in typical models used to analyze strategic behavior in oligopoly. In many 
empirical studies, firms are modeled as being fully strategic and playing some form 
of a Nash equilibrium. In a strategic equilibrium, the assumption is that all firms are 
best responding to the beliefs of their rivals and that firms’ beliefs are mutually con-
sistent. Implicit in this modeling approach, the differences across firms, whether it be 
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in firm or manager characteristics, do not cause firms to adopt different competitive 
strategies. These models are used to study the nature of competition and the welfare 
consequences of alternative market structures. For example, when studying differ-
entiated product industries, firms are modeled as engaging in Bertrand-Nash com-
petition in order to predict prices if firms were to merge. When studying auctions, 
researchers use a Bayesian Nash model of bidding to “invert” bids in order to esti-
mate valuations and to predict revenue and efficiency under alternative auction 
formats.

In this paper we ask: what if all firms engage in some level of strategic behavior, 
but some firms “fall short” of playing the Nash equilibrium? How does heterogeneity 
in strategic sophistication affect the efficiency of a market?

While models of strategic equilibrium are ubiquitous in empirical industrial 
organization, a large experimental literature on games demonstrates that subjects 
very often deviate from Nash equilibrium behavior (for example, see Kagel 
and  Roth  1995; Camerer 2003; and Fudenberg, Rand, and  Dreber 2012). To 
explain these deviations, a number of theoretical alternatives to Nash equilibrium 
play have been proposed. Among these, a popular framework is the cognitive hier-
archy model of Camerer, Ho, and Chong (2004).1 In a pioneering paper, Goldfarb 
and Xiao (2011) applies the cognitive hierarchy model to study the opening of the 
US local telephone market to competition, and finds that heterogeneity in strate-
gic sophistication, driven by different manager characteristics, affects the amount 
of entry into different local markets, and that more sophisticated firms are more 
likely to survive.

In this paper, we argue that the cognitive hierarchy model can capture observed 
firm behavior in an oligopoly pricing setting very well. Our setting is the Texas 
electricity market, previously studied in earlier work (Hortaçsu and Puller 2008), 
where we document that some firms persistently deviate from Nash behavior. Our 
prior work did not provide a theory explaining these deviations. In this paper, we 
show that the cognitive hierarchy model captures the heterogeneity in deviations 
from Nash behavior quite well, in- and out-of-sample. Moreover, cognitive hierar-
chy also provides a computationally tractable framework to study firm behavior and 
market outcomes under counterfactual scenarios such as mergers.

In the cognitive hierarchy model, the least strategic players, level-0 players,  are 
entirely non-strategic in their bidding. Level-1 players assume that all other players 
are level-0 players and choose actions that are the best-response to those beliefs. 
Level-2 players assume that all other players are some combination of level-0 
or level-1 players and best respond to those beliefs. In general, level-k players 
assume that all other players are distributed between level-0 and level-(k​ ​−​ ​1) and 
best respond to those beliefs.2

1 A rich literature in experimental economics has studied the behavior of laboratory participants in strategic 
games such a beauty contest games, documented deviation from Nash equilibrium play, and developed hierarchy 
models that can explain such behavior. For examples, see Nagel (1995), Stahl and Wilson (1995), Costa-Gomes, 
Crawford, and Broseta (2001), Crawford, Gneezy, and Rottenstreich (2008), and Arad and Rubinstein (2012).

2 As noted in Camerer, Ho, and Chong (2004), the limiting case of the Poisson-CH model corresponds to the 
Nash equilibrium as long as the Nash equilibrium is reached by finitely-many iterations of weakly dominated 
strategies; other Nash equilibria may not correspond to this case.
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As noted above, Goldfarb and Xiao (2011) uses the cognitive hierarchy (CH) 
model in empirical work to study entry decisions. Utilizing the CH model to study 
oligopoly pricing decisions is not straightforward, however. This is due to a critical 
identification problem. Consider the large number of empirical studies that use a 
model of expected profit maximization that maps marginal cost to prices, and then 
“inverts” the model so that data on prices can be used to estimate the underlying 
marginal cost. This approach, used in many oligopoly and auction settings,  hinges 
on the assumption of a particular form of strategic behavior. Otherwise, multiple 
combinations of behavior and costs may be consistent with the observed prices. 
Thus, in most empirical settings, the task of separately identifying parame-
ters of the CH model from unobserved costs becomes a difficult exercise.3 More  
generally, once the researcher allows for the possibility that firms deviate from 
Nash-type behavior, it is no longer possible to use observed prices to infer marginal 
cost.

This empirical challenge can be overcome if researchers have data on both the 
prices and the marginal cost. This paper exploits the data-rich environment of the 
Texas electricity spot market, in which many firms, which vary in size and other 
characteristics, compete. We have detailed data on individual firms’ marginal cost 
of production and bids into power auctions. Having access to marginal cost data 
allows us to capture departures from Nash behavior and to identify the parameters 
of the CH model.

We find that the strongest determinant of a firm’s level of strategic sophistication 
is size. Larger firms are higher type in the cognitive hierarchy, and thus are more 
strategically sophisticated. Manager characteristics, such as academic training, play 
a smaller but still significant role. Strikingly, there is substantial heterogeneity in 
the level of strategic sophistication across the firms in the Texas electricity market. 
This heterogeneity in sophistication impacts the efficiency of the market. Firms with 
lower levels of strategic sophistication submit bids that are so high that their plants 
are often priced out of the market despite the fact that their plants are often low cost. 
As a result, the power grid operator instead dispatches higher cost plants, resulting 
in inefficiently costly production. Finally, we do not find evidence of substantial 
learning in the early years of the market.

We also explore the extent to which our model predicts pricing behavior 
out-of-sample. We exploit a two-month outage at a nuclear plant in the middle 
of our sample period that significantly reduced nuclear power output. As a result, 
total demand for power intersected market marginal cost at a steeper point on the 
marginal cost function. We first test whether firms that are behaving strategically 
recognize that this publicly observable cost shock is likely to make their residual 
demand in the market less elastic. We find that firms estimated by our model to be 
a higher strategic type end up responding to the outage by recognizing that their 
residual demand is steeper, while lower-type firms do not. Second, we re-estimate 

3 One novel approach to address this problem in the auctions setting is proposed by Gillen (2010), which 
studies joint identification of types and valuations in the level-k setting. Gillen shows point identification of the 
joint distribution can be obtained by exploiting variation in the number of bidders and assuming constant valua-
tions across auctions. However, in the absence of either of these, only set identification is possible. An (2017) also 
studies identification in the level-k model; he relaxes some of the assumptions present in Gillen’s work but imposes 
constraints on the structure of the data to identify both the number of types in the data and the type of each firm.
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our model of bidding behavior without using the data from the outage period, and use 
these estimates to predict profits during the outage period. We show that the CH model 
outperforms a model of unilateral best response when predicting realized profits.

After estimating the model, we study how increases in strategic sophistication 
affect efficiency. We use the model parameters to calculate market outcomes 
under various scenarios in which the strategic sophistication of low-type firms is 
increased either exogenously or through mergers with high-type firms. An important 
benefit of using the CH model to study multi-unit auctions is that, unlike with 
Nash equilibrium models, we are able to simulate unique predictions of market 
outcomes under various policy counterfactuals. For multi-unit auctions, solving 
for Nash equilibria is difficult because the researcher is searching for a fixed 
point in a multidimensional function space. Because CH specifies beliefs, solving 
for outcomes is computationally straightforward because it is a sequence of best 
responses, as we discuss below.4 Thus, not only does CH allow for more realistic 
models of real-world bidding behavior, but it provides a convenient computational 
strategy for researchers to simulate outcomes under changes in strategic sophistica-
tion and market structure.

We simulate the effect on market efficiency of increasing sophistication 
through actions such as hiring better managers. Our results show that increases 
in strategic sophistication improve efficiency, though at a decreasing rate. For 
example, exogenously increasing the sophistication of low-type firms to the level 
of median-type firms will increase market efficiency by 9–16 percent. However, 
efficiency improvements are smaller when firms with median levels of sophistica-
tion are given higher sophistication levels.

We also simulate market outcomes if heterogeneous firms were to merge. For 
example, consider a merger between a large and small firm that only affects the 
firms’ bidding operations. Such a merger is unlikely to lead to cost synergies 
because the costs of generating electricity is almost entirely driven by technical 
characteristics of the power plants. One might expect the increase in market concen-
tration to enhance market power and reduce economic efficiency. However, if the 
firms are boundedly rational, this merger could increase efficiency. Suppose that the 
large firm is a high-level strategic thinker and the small firm is a low-level strategic 
thinker. If the merger causes the large firm to take over bidding operations, then the 
power plants of the small firm will subsequently be controlled by a higher level stra-
tegic thinker. This can increase efficiency because the power plants of the low-type 
firm are more likely to be bid in at prices that cause low-cost plants to produce. We 
evaluate this conjecture by simulating mergers between various firms in the Texas 
market. We find that, in this setting, if a small, low-type firm were to merge with a 
large, high-type firm, then efficiency will improve despite the increase in concentra-
tion. However, when medium-sized firms merge with large firms, the market power 
effect dominates the sophistication effect, and efficiency decreases.

This paper makes four key contributions beyond the previous literature, includ-
ing our earlier work on this market. First, this paper is constructive as we show 
that an important theoretical model of bounded rationality, cognitive hierarchy,  can 

4 Camerer, Ho, and Chong (2004) notes a related feature that the CH model can be viewed as a behavioral 
equilibrium refinement in certain classes of games.
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explain deviations from Nash equilibrium in a field setting where firms engage 
in price competition. To our knowledge, this is the first paper that examines  
pricing/bidding decisions, using field data, through the lens of the cognitive hierar-
chy model. Second, we show that a behavioral game theory model can make better 
out-of-sample predictions of pricing behavior than a Nash-type model. Third, we 
show that behavioral game theory can be used to conduct computationally efficient 
counterfactuals for multi-unit auctions, which is not possible in standard Nash-type 
environments. And fourth, we quantify the insight that events that increase 
sophistication such as mergers can improve efficiency, which is a contribution to 
antitrust, both for academia and practitioners.

More broadly, this paper contributes to two emerging bodies of literature: 
behavioral industrial organization, and the study of firm sophistication and 
learning in new markets. The literature on behavioral industrial organization has 
largely focused on the case of boundedly rational behavior by consumers, with 
less emphasis on boundedly rational behavior by firms. However, evidence on 
boundedly rational firm behavior has been growing. (For a recent comprehensive 
survey of structural behavioral economics, see DellaVigna 2018.) On the pricing 
margin, Cho and Rust (2010) finds, through a field experiment, that rental car com-
panies could increase profits by making rental rates a declining function of car mile-
age, and by holding on to their inventory of cars longer. Massey and Thaler (2013) 
finds evidence that NFL teams consistently over-value top draft picks. Ellison, 
Snyder, and Zhang (2018) estimates a model of price adjustment to capture price 
inertia and managerial inattention in an online market for computer components. 
DellaVigna and Gentzkow (2019) and Hitsch, Hortaçsu, and Lin (2019) report 
that many supermarket chains engage in near-uniform pricing and promotions 
across outlets located in zip codes with very different household income levels. 
Doraszelski, Lewis, and Pakes (2018) uses models of learning to predict the evo-
lution of pricing in a newly opened electricity market. Finally, other work also has 
shown that larger firms perform better than smaller firms (Bloom and Van Reenen 
2007 and DellaVigna and Gentzkow 2019).

Our paper also contributes to the literature on how electricity-generating firms 
formulate bids (e.g., Fabra and Reguant 2014) and models of oligopoly competition 
in electricity markets (e.g., Wolfram 1998; Borenstein, Bushnell, and Wolak 2002; 
Wolak 2003; and Bushnell, Mansur, and Saravia 2008). More broadly, this work 
relates to the literature that studies differences in productivity across firms (e.g., 
Syverson 2004 and Hsieh and Klenow 2009) and how managerial practices affect 
productivity (e.g., Bloom and Van Reenen 2007).

The paper proceeds as follows. Section I describes the Texas electricity market. 
Section II introduces the data and provides descriptive evidence that motivates 
our modeling assumptions. Section III describes the cognitive hierarchy model 
and Section IV introduces our model of non-Nash bidding. Section V discusses 
identification, estimation, and results. Section VI discusses a reduced-form test 
of strategic versus non-strategic behavior using a nuclear plant shutdown, which 
provides additional support for our modeling assumptions. Section VII shows 
that our model predicts bidding out-of-sample. Section VIII measures the effic
iency impact of increases in strategic behavior and of counterfactual mergers.  
Section IX concludes.
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I.  Institutional Setting

We study an early year of the restructured electricity market in Texas. Prior to 
2001, the Texas electricity industry consisted of vertically-integrated monopolies 
regulated by rate-of-return regulation. In 2001, the industry was restructured with 
former utilities divested into separate firms for power generation, transmission/
distribution, and retailing. In August 2001, a wholesale market was opened through 
which generating firms that own power plants sell wholesale power to transmission 
and distribution utilities that serve customers. The wholesale market allowed power 
trading via both bilateral transactions and an organized spot auction. This paper 
focuses on competition in this wholesale market.

In the bilateral market, generating firms contract with utilities that serve 
customers. One day before production and consumption occur, each generating firm 
schedules a fixed quantity of production for each hour of the following day with 
the grid operator. This “day-ahead schedule” serves the role of an initial plan for 
the next day’s production. Importantly, the production levels that are scheduled one 
day-ahead can differ from the quantities that the firm has financially contracted in 
the bilateral market, so a firm can be net short or net long on its contract position 
with its day-ahead schedule.

The second market for wholesale trading is an organized “day-of ” spot market 
that is run by the grid operator to ensure that production and consumption exactly 
balance at every point in time. For example, suppose that a summer afternoon turns 
out to be hotter than anticipated so that realized demand for power exceeds the 
amount of generation that was scheduled one day-ahead. Then the spot market, or 
‘balancing market’ in electricity parlance, is used to procure the additional supply 
needed to meet demand via an auction.

In the spot market, generating firms submit supply functions to increase or 
decrease production relative to their day-ahead schedule. If total electricity demand 
is higher than the aggregate day-ahead schedule, then the auction procures additional 
power and calls upon winning bidders to increase, or “INC,” production relative to 
the firm’s day-ahead schedule. In contrast, if total demand is smaller than the aggre-
gate day-ahead schedule, then winning bidders decrease, or “DEC,” production rel-
ative to the firm’s day-ahead schedule. During our sample period, approximately 
2–5 percent of all power transactions occurred in the balancing auction. We study 
bidding behavior in this auction. Although the balancing auction is small relative to 
the bilateral market in percentage terms, we show below that substantial profits can 
be earned with “sophisticated” bidding into the auction.

The auction proceeds as follows. On the supply side, each firm bids a set of 
price-quantity pairs to create a bid function. The bid function is a step function, and 
the firm is allowed to submit up to 40 steps in its hourly bid function. For example, a 
firm may have scheduled 2,000 MW to be produced in a given hour. In the balancing 
auction, the firm is bidding to, say, increase production by 100, 200, or 300 MW 
(to 2,100, 2,200, or 2,300 MW of total production) or to decrease production from 
the 2,000 MW that was scheduled.5 Bid functions are not tied to specific generating 

5 To be precise, each generating firm submits monotonically increasing step functions with up to 40 elbow points 
(up to 20 points to “INC” production and 20 points to “DEC” production from the firm’s day-ahead schedule).
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units; rather a firm’s bid function represents offers to sell from the firm’s portfolio 
of power plants. The firm submits a separate bid function for each hour of the day, 
and bids are finalized one hour before the operating hour.

The demand side of the market is driven by customer usage. However, the price 
that customers pay, the retail price, is not tied to the hourly wholesale price in the 
balancing auction. For this reason, the balancing demand function for each hour is 
perfectly inelastic.

The grid operator accepts supply bids from generating firms, observes the total 
balancing demand, and clears the market. The format of the auction is a multi-unit, 
uniform-price auction. Therefore, the grid operator finds the market-clearing price 
where aggregate supply bids (a monotonically increasing step function) intersects 
the perfectly inelastic balancing demand. Each firm is called to supply to the balanc-
ing market the quantity that was bid at the market-clearing price, and it is paid the 
market-clearing price for all power called to produce in the balancing auction. Thus, 
if a firm is called to increase production from its day-ahead schedule, it is paid the 
market-clearing price for its incremental production. If a firm is called to decrease 
production from its day-ahead schedule, it purchases power at the market-clearing 
price to meet any existing contract obligations.

The generating firms that compete in the Texas market differ along a number of 
dimensions. Most importantly, firms vary in the size of their generating capacity. 
Two of the former investor-owned utilities, TXU and Reliant, are the two largest 
players, owning 24  percent and 18  percent of installed capacity, respectively. 
Other major investor-owned utilities include Central Power and Light (7 percent of 
installed capacity) and West Texas Utilities (2 percent). Private firms without any 
historical connection to utilities, so-called “merchant generators,” include firms such 
as Calpine (5 percent of installed capacity), Lamar Power Partners (4 percent), and 
Guadalupe Power Partners (2 percent). Small municipal utilities such as Garland 
Power & Light and Bryan Texas Utilities each comprise less than 1 percent of total 
capacity. The power plants are primarily fueled by natural gas and coal, although 
there are small amounts of hydroelectric, nuclear, and wind generation. Firms also 
vary in the education background and job experience of personnel in charge of 
power marketing operations, as we discuss below.

II.  Data

We study firm bidding behavior into the balancing auctions in an early year of 
the market’s operation. Specifically, we study the first half of the second year of the 
market, as depicted in Figure 1.6 Because our sample period begins in the second 
year of the market’s operation, the firms had time to build up their trading operations 
and develop bidding strategies by the time that our sample begins. By the beginning 
of our sample, firms had submitted bids into the balancing market for every hour of 
every day for one year.

6 We obtained our data through a one-time arrangement with the Public Utility Commission of Texas, and 
unfortunately we are unable to extend our sample period to later years of the market. We end the sample period 
in January 2003 because a major ice storm hit Texas in February 2003 that caused large disruptions of the electric 
transmission grid and general market operations.
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One appealing feature of studying electricity markets is that detailed data are 
available on firm operations and costs. For each hourly auction, we have data on 
total demand for balancing power, each firm’s bid functions, and each firm’s mar-
ginal cost of providing power to the balancing market. These are the same data used 
in Hortaçsu and Puller (2008)—henceforth, HP.

Total balancing demand is perfectly inelastic because virtually no consumers face 
wholesale prices during the time of our study. Our balancing demand data are the 
hourly demand functions that were used by the grid operator to clear each auction. 
The bid data consist of each firm’s bids to increase and decrease production relative 
to the firm’s day-ahead schedule.

A key feature of our empirical strategy is that we measure each firm’s marginal 
cost of supplying power to the balancing auction. We focus on the 6 pm hour of 
weekdays because the generators online during this interval are the most flexible 
type of generators that can respond to balancing calls without large adjustment 
costs.7

We measure the marginal cost that each firm faced in each hour to change 
production from its day-ahead schedule. Our marginal cost function for a given firm 
consists of all the firm’s generating units that are verified to be “on-line” and operat-
ing during the hour of the auction.8 Our data from ERCOT indicate which generat-
ing units are operating and the day-ahead scheduled quantity of each unit. Each unit 
is assumed to have constant marginal cost up to capacity. For each generating unit, 
we observe the amount of capacity that the firm declares the unit can produce on a 
given day. (Below, we provide evidence that firms do not misstate their capacity.) 
In addition, we incorporate that firms cannot reduce generation below a minimum 
operating level.

The primary variable cost for electricity generation is fuel. For each natural gas 
and coal-fired unit, we have data on the “heat rate,” the rate at which the generator 
converts the energy content of the fuel into electricity (Henwood Energy Services). 
Fuel costs for natural gas units are the daily natural gas spot prices at the nearest 
trading hub in Texas (Natural Gas Intelligence) plus a distribution charge. For coal 
units, we use the monthly average spot price for coal delivered to Texas (EIA). 
Variable costs also include a variable operating and maintenance cost per MWh 

7 The technologies that are able to quickly adjust consumption in response to balancing calls are natural-gas 
fired units and to a lesser extent coal-fired units. Nuclear and wind generated units are not marginal production units 
during these hours. Texas has very few hydroelectric units, and we do not study the behavior of the few firms that 
own hydro units.

8 Because the units are already operating when the balancing auction clears, we do not need to incorporate any 
startup costs.

Market opens 8,760 hourly auctions Sample period

8/1/2001 8/1/2002 1/31/2003

Figure 1. Market Time Line and Our Sample

Note: The figure presents the sample period considered in estimation.
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(Henwood Energy Services). Finally, units that emit ​​SO​ 2​​​ incur permit costs (EPA). 
This approach to measuring variable costs is standard in the literature on electricity 
markets. We refer the reader to Hortaçsu and Puller (2008, online Appendix B) for 
further details.

Using these data, we calculate each firm’s marginal cost of production in a given 
hour. Because each firm is bidding to change production relative to its day-ahead 
schedule, we subtract the day-ahead scheduled quantity from its total marginal cost 
to measure the marginal cost of supplying power to the balancing market. A stylized 
representation of this function is shown in Figure 2 with ​​MC​ i​ Auction​​. This function’s 
values in the first quadrant represents the firm’s marginal cost of increasing 
production beyond its day-ahead schedule, i.e., supplying positive power to the 
balancing market. And the function’s values in the second quadrant represents the 
firm’s marginal savings of reducing production from its day-ahead schedule, i.e., 
supplying negative production to the balancing market.

In our model below, marginal cost is public information. While this assumption 
may not hold in many industries, it holds in the electricity industry because the pro-
duction technology is very similar across power plants in Texas and fuel costs are 
publicly available. This was confirmed in conversations with several market partici-
pants suggesting that traders have good information about their rivals’ marginal cost. 
Moreover, firms likely know when major generating units are on- or off-line; some 
firms purchase data from an energy information company that measures real-time 
output using remote sensors installed near power plants.

In the majority of hours during our sample, the Texas market was fully integrated 
so that all power plants face the same selling price. However, in 26 percent of hours, 
transmission lines were congested which led to different prices in different zones of 
the state. We exclude those auctions when there was transmission congestion; HP 
show that this does not affect our inference about bidding behavior. After restricting 

P

MW

Total MCiMCi Auction

Day ahead schedule

0

Figure 2. Stylized Marginal Cost of Supplying to Balancing Market

Note: The figure presents a stylized representation of how the marginal cost curve is shifted by the day-ahead 
schedule.
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our sample to weekdays during the six-month sample period when there was no 
transmission congestion, we study 99 auctions.

A. Descriptive Evidence

As motivating evidence for our model, we show evidence that firms are not 
best-responding to the bidding behavior of their rivals. In fact, if each firm were to 
use publicly available data on recent bids, profits would significantly increase. To do 
so, first we explain how bids would be chosen if firms best respond to their rivals’ 
actions.9 Figure 3 explains the basic intuition of best-response bidding. Suppose that 
a firm has marginal cost of supplying to the balancing market given by ​​MC​ i​​​. And 
the firm has signed forward contracts to supply an additional ​​QC​ i​​​ units of power 
beyond its day-ahead schedule. Because the firm is a net seller after it has covered 
its contract position, the firm has an incentive to bid prices above marginal cost 
for quantities greater than ​​QC​ i​​​ . Likewise, the firm is a net buyer for quantities less 

9 We characterize a formal model of bidding in Section IV.

Figure 3. Best-Response Bidding in Spot Auction

Note: The figure presents a stylized representation of how best-response bids can be computed.
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than ​​QC​ i​​​ , so it has an incentive to bid prices below MC for quantities less than the 
contract position in order to drive down the market price. The size of the markup will 
depend on the firm’s residual demand elasticity. The residual demand function ​​RD​ i​​​ 
is equal to the total market demand minus the supply bids by all other bidders. 
Suppose that it is a hot day and the firm faces ​​RD​ 1​​​. A profit-maximizing firm will 
bid a quantity corresponding to the point where Marginal Revenue equals Marginal 
Cost (​​MR​ 1​​  =  ​MC​ i​​​) and the price on the (inverse) Residual Demand function at that 
quantity. This is given by point ​A​. Alternatively, it could be a cooler summer day so 
that total demand is lower and thus residual demand shifts in, as given by ​​RD​ 2​​​. In 
that case, the same logic implies that the best response is point ​B​. Because the firm 
can submit a large number of (price, quantity) points, it can consider a continuum 
of different residual demand functions. Thus, the firm can “trace  out” the set of 
best-response bids, and submit a best-response bid function given by ​​S​​ BR​​.10

We can construct data analogs to these stylized pictures. Importantly, no esti-
mation is required; the components of Figure 3 are available as data for each firm 
in each auction. We view this data-rich environment as a major strength of our 
approach.

We now present descriptive evidence that some firms deviate from Nash 
equilibrium bidding, and we use this evidence to motivate our modeling assump-
tions. Figure 4 displays representative bid functions for four different firms. The 
top-left and top-right firms both have large quantities of generation capacity. The 
bottom-left firm has smaller generation capacity and the bottom-right firm is very 
small. Each of these figures shows the bids on the “INC” side of the market (i.e., the 
horizontal axis includes only positive balancing market quantities). The firms also 
compete on the “DEC” side of the market (negative balancing market quantities) 
which we include in our analysis but for exposition is not depicted here.

Panel A of Figure 4 displays a bid function for a large firm that submits bids that 
correspond closely to the best-response to actual rival bids. As shown by the mar-
ginal cost function, the firm has the capacity to increase production relative to its 
day-ahead schedule by about 1,800 MW. The firm has a contract position of about 
600 MW upon entering the balancing market, so it has incentives to bid prices above 
marginal cost for quantities above 600 MW.11 But it will be a net buyer for quanti-
ties below 600 MW, so it has incentives to bid below marginal cost in order to drive 
down the market price. As seen by comparing the Best-response bid and Actual bid 
curve, the firm is bidding in a manner that very closely resembles best-response 
bidding.

However, other firms deviate from best-response bidding, and the magnitude of 
the deviation varies in the size of the firm. Panel B of Figure 4 displays a bid func-
tion for another firm with substantial generation capacity. This firm has a contract 
position of about 500 MW upon entering the balancing market, so best-response 
bids are above (below) marginal cost for quantities greater (less) than the contract 
position. The firm’s actual bid function deviates from the best-response bid. For 
quantities below the contract position of about 500 MW, the firm submits bids at 

10 In general, it is possible that the set of best-response points is not a monotonic function, however we show in 
Section IV that in this setting the best-response points are monotonic.

11 In Section IV, we show how we measure the contract position in our data.
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prices of approximately $35, which is below the marginal cost of $43. However, the 
best-response to actual rivals bids is around $40. For quantities above the contract 
position of 500 MW, the firm submits bids at prices higher than the best-response bid 
prices. Loosely speaking, the firm submits a bid function that is “too steep” relative 
to the best-response bid. The firm’s actual bid would correspond to best-responding 
only if the firm faced a residual demand function that is less elastic than the realized 
residual demand function. Thus, the bid function is consistent with the firm believ-
ing that its residual demand is less elastic that it actually is.

Panels C and D of Figure 4 show bids for small and very small firms. For each 
firm, the contract position is zero. As shown by the best-response bids, each firm has 
some market power despite being small, so it is optimal to bid prices several dollars 
above marginal cost. However, the firm in panel C submits high-priced bids and 
only offers a small quantity into the market: the firm has nearly 400 MW of available 
capacity yet it only offers 35 MW at relatively high prices. The firm in panel D bids 
in a similar fashion: only small quantities are offered into the market even though 
the firm has available capacity from power plants that are already operating.
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Figure 4. Actual Bids versus Best-Response Bids for Different-Sized Firms

Notes: Each figure plots one example of the bidding behavior of a firm in an auction. MC function displays the 
firm’s variable cost of supplying incremental power to the balancing market. The profit-maximizing Best-response 
bid is computed using the method described in Section IIA. Actual bid curve is the bid that the firm submitted into 
the auction.
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Firms that submit bids that are “too steep” relative to best-response bids have 
two important consequences for the market. From the perspective of the firm, the 
bids effectively price the firm out of the market which reduces producer surplus 
relative to best-response bidding. But, importantly, the bidding behavior reduces the 
efficiency of the market. In some auctions, the firms exhibiting this type of bidding 
behavior have low-cost power plants available to supply additional power to the 
balancing market, yet the generators are not called to produce because bid prices 
are higher that market-clearing prices. This creates productive inefficiency because 
higher-cost generators must be called to produce instead. As we document below, 
this productive inefficiency can be sizable.

Constructing similar figures for other firms in our sample generates systematic 
patterns. In particular, a few firms bid very close to “vertical bids” where very little 
generation capacity is offered into the market. Other firms offer substantial gen-
eration quantities into the market but offer that capacity at prices that are above 
the best-response prices. Also, for any given firm, the shapes of bids relative to 
best-response bids are very persistent across auctions; firms do not go back and forth 
between bidding “too steep” and bidding “too flat.” Importantly, these deviations 
from best-response reduce profits, despite the fact that a simple trading rule based 
on publicly observable information could increase profits, as we show below.

These patterns in bid behavior create a puzzle: why do firms exhibit heteroge-
neity in bidding behavior relative to a benchmark of best-response bidding? Firms 
systematically submit bids that span a wide range, from close to the best-response 
benchmark to bids that are “too steep” to bids that are nearly vertical. These pat-
terns motivate our model of boundedly rational bidding within a cognitive hierarchy 
structure. In our model below, we allow firms with different characteristics to differ 
in level of strategic sophistication.

B. Ruling Out Alternative Explanations

Before describing our model, we explore possible alternative factors that could 
explain the observed behavior. After discussing these and arguing that none of them 
can rationalize our data, we turn to the cognitive hierarchy model.

First, we ask whether the potential profits in the balancing market are enough to 
justify setting up a bidding operation. We use observed bids to compute realized 
profits for each firm in each auction. Then, as in HP, we calculate profits under two 
scenarios: (i) best-response bidding and (ii) bidding vertically at the contract posi-
tion (which is effectively not participating in the balancing market except to meet 
contract obligations). With these numbers in hand, we compute the fraction of poten-
tial profits that were achieved by actual bidding relative to non-participation. The 
results are summarized in online Appendix Table A.1 and show that, with the excep-
tion of the largest firm Reliant, none of the other firms achieved more than one-half 
of potential profits. One can calculate the profit increases of best-responding relative 
to bidding vertically at the contract position. If one conducts a back-of-the-envelope 
calculation to extrapolate these profits to every hour of a year, the increase in profits 
relative to bidding vertically ranges across the firms from $4.3 million/year to 
$37.4 million/year, which appears high enough to justify the labor and capital costs 
of a bidding operation.
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Second, we show descriptive evidence that the phenomenon of offering small 
quantities into the market by submitting bids that are “too steep” is equally prevalent 
in the first and second year of the market. Specifically, for each firm-auction, we cal-
culate the amount of generation capacity that the firm offers relative to the contract 
position at the market-clearing price, and we test whether firms offer additional gen-
eration into the market in the second year. The results, reported in online Appendix 
Table B.1, show that firms offer essentially the same capacity in the second year as 
they did in the first one.

Third, having shown that profits “left-on-the-table” are significant and that the 
behavior is persistent, one might expect that some firms that are forgoing profits will 
eventually exit the market or be acquired. While we cannot rule out such evolution 
of ownership in the long run, evidence suggests that any such dynamics are slow in 
this market. Among the firms that we analyze, only one firm was sold by 2005.12 
Thus, while we cannot rule out longer-term market responses to the foregone profits, 
it is clear that the firms that are deviating from best-response continue to be market 
players after four years of market operations.13

Next, we explore possible explanations based upon technical features of electric-
ity market operations. First, we do not believe that there are unmeasured variable 
costs that we fail to incorporate. Recall that our marginal cost function incorporates 
generating units that are “on and operating” and that the measure of capacity is 
declared by the firm each day. We incorporate fuel, operating and maintenance, 
and emission costs which comprise all of the major sources of variable costs. It is 
worth noting that even if one of these variable costs is biased up to a level shift, this 
would not affect our finding that firms deviate in the slope of their bid functions. 
One might be concerned that there are unobserved costs to adjust production in 
the balancing market. Based on our discussions with industry officials, there are 
no meaningful costs to increasing or decreasing production on short notice. Firms 
have invested in hardware and software that automatically adjust production when 
the balancing market clears. For example, the sample bid in panel B of Figure 4 is 
not consistent with there being unmeasured adjustment costs. The firm is bidding 
prices too low for positive balancing quantities below its contract position. If there 
were unmeasured adjustment costs to changing production from the day-ahead 
position, one would expect prices above the best-response benchmark for quanti-
ties just above zero.

The primary means through which adjustment impacts output are constraints on 
the rate at which generating units can increase production, called “ramprates.” In the 
vast majority of intervals in our sample, the marginal units to adjust output are natu-
ral gas-fired units which generally are flexible and have “fast” ramprates. Ramprates 
are unlikely to drive the cross-firm heterogeneity in bidding behavior because many 
of the firms have generating units with similar ramprates. For example, the ram-
prates of the generating units of the top-left and bottom-left firms in Figure 4 are 
very similar, yet the firms bid quite differently. More formally, we measure the cor-
relation between firm size and the firm ramprate per unit of capacity. If ramping 

12 Central Power & Light was acquired by Sempra Energy and a private equity group in March 2004.
13 We are unable to acquire additional years of data to analyze bidding behavior in later years. Therefore, we 

cannot assess whether the underperforming firms made changes in internal bidding operations.
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constraints were a driver of our main findings, we expect to find a strong positive 
correlation between ramping capability and size. We find no strong correlation; in 
fact, the correlation is −0.205, suggesting that if anything, larger firms have slightly 
less ramping capability.

Second, one might be concerned that bidding rules prevent firms from submit-
ting bids that correspond to the best-response bids. The best-response benchmark in 
the descriptive evidence assumes that uncertainty shifts rather than pivots residual 
demand. As a result, the set of best-response bids will be monotonic which is a 
requirement of the bidding rules. In general, it is possible that uncertainty results in 
pivots in residual demand. The published version of HP includes tests for this pos-
sibility, and the NBER working paper version (Hortaçsu and Puller 2005) includes 
moment-based tests for expected profit maximization. We find strong evidence that 
the form of uncertainty and bidding rules do not bias our best-response bids as a 
benchmark for expected profit-maximizing behavior.

The most straightforward evidence is that a simple trading rule would have sys-
tematically raised profits for all but the largest firm. This trading rule uses only 
information available at the time that bids are submitted and it respects all auction 
rules about the shapes of bid functions. The trading rule exploits an institutional 
feature of the Texas market: the grid operator publicly released the aggregate bid 
schedule with a two-day lag. Thus, firms can learn recent information about their 
rivals’ aggregate bid behavior. Suppose a firm were to use the lagged aggregate bid 
data to create best-response bid functions to rivals’ bids from three days prior to 
each auction, and submit these bids to the current auction. We compute these lagged 
best-response bids and use the bids to clear the market with the actual (step func-
tion) residual demand for the current auction. We find that this simple trading rule 
significantly outperforms the actual realized profits for all but the largest firm. The 
results of this test are reported in online Appendix Figure C.1.

Third, the possibility of congested transmission lines does not explain why actual 
bids differ from best-response. We exclude auctions where transmission lines are 
congested between zones in Texas, but the possibility of congestion could impact 
bids even if congestion is not realized. However, this does not explain the devia-
tions from best-response bids that we observe. First, expected congestion might 
explain bids that are “too steep” in import-constrained zones, but some firms are in 
export-constrained zones and nevertheless submit bids that are “too steep.” Second 
and more formally, Hortaçsu and Puller (2005) finds that firm profitability is not 
strongly related to the frequency of transmission congestion.

Fourth, we show in online Appendix D that the observed deviations from 
best-response bidding are not driven by mismeasurement of firm capacity. Moreover, 
additional markets for ancillary services such as “regulation up” cannot explain all 
of the observed deviations from best-response because the total amount of ancillary 
services procured is significantly lower than the joint quantity of excess capacity 
that firms have available when submitting balancing market bids.14

Finally, it seems implausible that collusion explains the deviations from 
best-response. Many of the firms, especially the small firms, that deviate from 

14 Also, prices in the ancillary services markets were relatively low: prices were below $20/MW in 95 percent 
of the intervals during the first 1.5 years of the market (Baldick and Niu 2005).
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best-response submit bids that are vertical at the contract position. As a result, 
revenues are zero. Thus, a collusive regime would require side payments from the 
few large firms to numerous small firms.

III.  Empirical Strategy to Estimate a Cognitive Hierarchy Model of Bidding

A. Background on Cognitive Hierarchy

The theoretical literature has developed a rich set of models of boundedly rational 
strategic behavior that can explain deviations from Nash Equilibrium play. Generally 
speaking, bounded rationality models relax one of the two conditions of Nash 
Equilibrium: (i) players maximize expected payoffs given beliefs about their rivals’ 
actions and (ii) player beliefs about rivals’ actions are consistent. Hierarchy models 
(such as cognitive hierarchy and level-k) maintain the assumption of best-response 
but relax the assumption of consistent beliefs.15 These models conceptualize players 
as having a hierarchical structure of strategic, or level-k, thinking. Seminal work on 
level-k models include Costa-Gomes, Crawford, and Broseta (2001); Camerer, Ho, 
and Chong (2004); and Crawford and Iriberri (2007).

Cognitive hierarchy (CH) developed by Camerer, Ho, and  Chong (2004) 
conceptualizes players as engaging in different levels of strategic thinking ordered 
in a hierarchy. The least sophisticated players, 0-step players, engage in no strategic 
thinking, while higher types assume that all other players are distributed between 
0-step and ​(k − 1)​-step players according to a Poisson distribution.16 Importantly, 
a player’s belief about rivals need not be correct; hence, the beliefs are not mutu-
ally consistent. However, each player rationally best-responds given its (perhaps 
incorrect) beliefs, meaning that CH maintains the rationality assumption of Nash 
Equilibrium but relaxes the assumption of mutually consistent beliefs.17

B. Big Picture of Modeling and Estimation Strategy

The recursive nature of decision rules under CH facilitates a computationally 
tractable empirical strategy. Consider firm ​i​ that is type ​k​. Under the CH model, 
firm ​i​ believes its rivals are distributed between type-0 and type-(​k − 1​), according 
to a normalized Poisson distribution with parameter ​τ​. Given its marginal cost and 
beliefs about rivals’ types, firm ​i​ chooses bids to maximize expected profits.

15 Another model used in the bounded rationality literature, Quantal Response Equilibrium (McKelvey 
and  Palfrey 1995), does not appear to be suitable in our particular setting. QRE has the property that players 
play more profitable strategies with higher probability. However, small players in our setting systematically play 
low-profit strategies as shown in the sample bid functions above. Thus, it does not appear that our bidders estimate 
expected payoffs in an unbiased way, a key feature of the QRE model.

16 The model does not require the distribution be Poisson. However, Camerer, Ho, and Chong (2004) notes 
that the Poisson has the property that as ​k​ rises, fewer players perform the next step of thinking, which is consis-
tent with increasing working memory being required for an additional step of iterative calculation. This cognitive 
hierarchy structure is conceptually appealing because it captures behavior in which firms have limits to the level of 
strategic thinking and/or firms are overconfident about their own abilities. Note that it might seem peculiar that a 
firm believes that all rivals are strictly lower types rather than equal types. However, if a firm believed that its rivals 
were playing the same level strategy, that firm would best respond which would make it a higher than ​k​-level player.

17 The level-k model is a specific form of the CH model where a level-k player assumes that all other players 
are level-(k − 1). In other words, rather than rivals coming from a distribution of types (k − 1) and below, in the 
level-k model, rival firms are type (k − 1).
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One critical feature of estimating a CH model is how to define level-0 behavior. In 
the theoretical literature, a convenient assumption is that level-0 players uniformly 
randomize across all possible strategies, however Camerer et al. note that this is a 
placeholder assumption that can be modified to specific settings.18 One conceptual-
ization of a behavior that falls into level-0 is taking a very salient action that requires 
“low mental effort.” In the context of the Texas electricity auctions, there is a natural 
assumption about non-strategic thinkers: bidding “vertically” at the contract posi-
tions for the range of plausible prices. (That is, the firms submit bids similar to panel 
D of Figure 4.) Our level-0 firms realize that they need to “true up” their contract 
position, so they bid so as to satisfy their contract position (a factor that they know). 
However, such firms do not view the balancing auction as a profit-making opportu-
nity worthy of “strategic energy” to develop a sophisticated bidding strategy. A ver-
tical bid at the contract position essentially indicates that even at very high prices, 
the firm does not want to sell power into the balancing market. Vertical bidding at 
the contract position is also empirically motivated in this setting because the firms 
that submit nearly vertical bids earn the lowest fraction of potential profits. Thus, 
“vertical bidding at the contract position” is a natural candidate for level-0 bidding 
behavior in this setting.

Our modeling choice about level-0 behavior is important because it anchors the 
bidding of higher types that respond to level-0 firms. While other types of bidding 
behavior are candidates for level-0 behavior, in Section VA we discuss the impli-
cations of such bidding patterns. Alternative level-0 assumptions are not consistent 
with the observed behavior in this market, as we show in Section VA. Moreover, in 
Section VI, we provide additional empirical evidence supporting the vertical bid-
ding assumption.

One advantage of using this level-0 assumption is that we do not need to make 
strong assumptions about the form of the bid functions. Instead, as we show 
below, the assumption of level-0 firms bidding vertically at their contract positions 
together with the recursive solution method of the CH model allow us to completely 
characterize the bidding functions without further assumptions about how private 
information enters the bidding decision.

Finally, we assume that only a subset of firms enter into the cognitive hierar-
chy, while the rest form part of an unmodeled fringe. We do this because allow-
ing for more firms makes the problem computationally challenging as each firm 
needs to compute its rivals bidding functions for all possible types, for all auctions. 
Furthermore, we do not have marginal cost data for all firms for all auctions, which 
imposes a constraint on the number of firms that we can include in the CH. For this 
reason, we select 12 firms to model with CH: these firms vary in firm characteris-
tics and size, and jointly represent 66 percent of industry capacity. Nonetheless, 
in online Appendix E, we show that our baseline estimates are robust to this sam-
ple selection process. To do this, we sequentially add firms to the cognitive hierar-
chy and re-estimate our model. The outcome of this exercise is reported in online 
Appendix Figure E.1 and shows that our estimates are robust to the way in which we 
define the sample of firms to model as strategic players.

18 For example, Goldfarb and Xiao’s level-0 firms assume that no other firms enter the market.
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Once level-0 bidding is defined, we can use our data on each firm’s marginal 
cost to calculate the bidding behavior for a firm of any type ​k  >  0​. Firms observe 
characteristics of their rivals ​​X​ −i​​​ (e.g., size) and form beliefs about their rivals’ 
type distributions. Specifically, the type distribution is given by ​Poisson(​τ​i​​​(​X​ i​​, β)​​) 
where ​​τ​i​​( · )​ captures how firm characteristics map into type.19 For any mapping 
from firm characteristics to type, we use an iterative procedure to calculate each 
player’s optimal theoretical bids under various sophistication levels. Given level-0 
players’ bids, we calculate level-1 best-response bids for each firm. For each firm, 
level-1 bids are calculated as the best-response to level-0 bids by all the other CH 
firms and the bids by the unmodeled fringe. Then given our calculated level-0 and 
level-1 best-response bids, we calculate the level-2 best-response bids for each firm, 
and continue this recursive process up to the highest type ​K​.

We then compare these calculated bids to the firm’s actual bidding behavior. 
The estimation process finds the parameters of ​​τ​i​​​(​X​ i​​, β)​​, how firm character-
istics such as size affect strategic sophistication, that minimize the distance 
between actual bids and the bids predicted under CH. That is, in estimation, we 
use observed bids and realized marginal costs to recover the type of each firm. 
For this reason, it is critical that we observe marginal costs; in the absence of 
cost data, one would not be able to identify types from bid data without addi-
tional assumptions regarding the cost function.20 In other words, instead of using 
data on observed bids and a Bayesian Nash equilibrium model of behavior to 
recover costs, we use data on costs and bids to recover the type that rationalizes  
observed behavior.

IV.  Formal Cognitive Hierarchy Model of Bidding

This section formulates best-response bidding in a setting where firms have 
beliefs  about rivals as characterized by the cognitive hierarchy model. We 
incorporate  a model of bidding into share auctions (Wilson 1979 and Hortaçsu 
and  Puller 2008) into the Poisson cognitive hierarchy model (Camerer, Ho, 
and Chong 2004).

Demand for power in each spot auction is given by ​​​D​ t​​ ̃ ​​( ​p​ t​​)​  = ​ D​ t​​​( ​p​ t​​)​ + ​ε​t​​​ which 
is the sum of a deterministic and stochastic component.21 The auctions occur in a 
private values setting where the private value is the firm’s variable cost of providing 
power to the grid. Firm ​i​ has costs to supply power in period ​t​ given by ​​C​ it​​​(q)​​. Prior to 
the auction, each firm has signed contracts to deliver certain quantities of power each 
hour ​​QC​ it​​​ at price ​​PC​ it​​​, and we take these contracts to be predetermined. Note that 
​​C​ it​​​(q)​​ is modeled as public information because, as discussed above, in this  
industry power plant characteristics are public information and firms know when 
major generating units are online. In contrast, ​​QC​ it​​​ is private information because 

19 This implies that firms with the same characteristics can be a different type; ​​τ​i​​ ( · )​ determines the 
distribution from which type is drawn. However, rivals with the same observable characteristics generate the same 
(distribution of) beliefs.

20 Specifically, without any assumption on the form of the cost function, it is always possible to recover a cost 
function that rationalizes observed bids.

21 Although demand in the spot auction is inelastic (the retail price is not determined by the hourly 
wholesale  price), we model demand as a function of the spot price because in estimation we model bidding 
behavior of a subset of firms that face a residual demand that is net of supply by an unmodeled fringe.
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firms do not publicly disclose the terms of their forward contracts. As far as strate-
gic ability, each firm is a ​k​-step thinker. Firm ​i​ has private information on its own 
type ​​k​ i​​​, but it only knows the distribution from which rival types are drawn. In 
each auction, firms simultaneously submit supply schedules ​​S​ it​ k​​( p, ​QC​ it​​)​​ to produce 
different quantities at different prices. Let the bid function by rival ​j​ of type ​l​ be  
denoted ​​S​ jt​ l ​( · )​.

All ​N​ sellers are paid the market-clearing price ( ​​p​ t​ c​​ ), which is determined by

(1)	​​  ∑ 
i=1

​ 
N

 ​​ ​S​ it​​​( ​p​ t​ c​, ​QC​ it​​)​  = ​ D​ t​​​( ​p​ t​ c​)​ + ​ε​t​​.​

From the perspective of firm ​i​ with private information on ​​k​ i​​​, ​​QC​ it​​​, and submit-
ting bid ​​​S ˆ ​​it​​​( p)​​, the uncertainty can be characterized by defining the following func-
tion ​H( · )​ which defines the probability that the market-clearing price ​​p​ t​ c​​ is below 
any price level ​p​:

(2)	 ​​H​ it​​​(p, ​​S ˆ ​​it​​​(p)​; ​k​ i​​, Q​C​ it​​)​  ≡  Pr​(​p​ t​ c​  ≤  p | ​​S ˆ ​​it​​​(p)​, ​k​ i​​, Q​C​ it​​)​​.

There are three sources of uncertainty: (i) the shock to demand (​​ε​t​​​), (ii) each 
rival’s type of ​k​-step thinking, and (iii) each rival’s contract position ​​QC​ jt​​​ which 
affects the rival’s bids.

The event that the market-clearing price ​​p​ t​ c​​ is less than any given price ​p​ is the 
event that there is excess supply at that ​p​. Plugging the market-clearing condition 
(equation (1)) into (equation (2)), and letting ​​l​−i​​​ represent the vector of types of ​i​’s 
rivals:

(3) ​ ​H​ it​​​(p, ​​S ˆ ​​it​​​(p)​; ​k​ i​​, Q​C​ it​​)​ 

	 =  Pr​(​∑ 
j≠i

​ ​​ ​S​ jt​ l ​​(p, ​QC​ jt​​; ​k​ i​​)​ + ​​S ˆ ​​it​​​(p)​  ≥  ​D​ t​​​( p)​ + ​ε​t​​  |  ​​S ˆ ​​it​​ ​( p)​, ​k​ i​​ , ​QC​ it​​)​

	 = ​ ∫ ​QC​−it​​×​l​−i​​×​ε​t​​
​ 

 

  ​​1​(​∑ 
j≠i

​ ​​ ​S​ jt​ l ​​(p, ​QC​ jt​​; ​k​ i​​)​ + ​​S ˆ ​​it​​​( p)​

� ≥  ​D​ t​​​( p)​ + ​ε​t​​)​ dF​(​QC​−it​​, ​l​−i​​, ​ε​t​​  |  ​​S ˆ ​​it​​​( p)​, ​k​ i​​ , ​QC​ it​​)​​

where ​F​(​QC​−it​​ , ​l​−i​​, ​ε​t​​  |  ​​S ˆ ​​it​​​( p)​, ​k​ i​​ , ​QC​ it​​)​​ is the joint density of each source of  
uncertainty from the perspective of firm ​i​.

A firm’s realized profit in this setting (after the realization of uncertainty) is given 
by

(4)	​ p ⋅ ​​S ˆ ​​it​​​( p)​ − ​C​ it​​​(​​S ˆ ​​it​​​( p)​)​ − ​( p − ​PC​ it​​)​​QC​ it​​​.

This profit is spot market revenues minus costs plus the payoff from its contract 
position.

We model the bidder’s expected utility maximization problem, where we allow 
for bidders to be risk averse or risk neutral. We denote the utility enjoyed by the 
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bidder earning ​π​ dollars of profit as ​U​(π)​​. Under the CH model, best-response ​k​-step 
thinking bidders solve

 ​ ​max​ 
​​S ˆ ​​it​​​( p)​

​ ​ ​∫ ​ p _ ​​ 
​p – ​
​​​(U​(p ⋅ ​​S ˆ ​​it​​​( p)​ − ​C​ it​​​(​​S ˆ ​​it​​ ​( p)​)​ − ​( p − ​PC​ it​​)​​QC​ it​​)​)​ ​dH​ it​​​( p, ​​S ˆ ​​it​​ ​( p)​; ​k​ i​​ , ​QC​ it​​)​​.

One can show that the Euler-Lagrange necessary condition for the (pointwise) 
optimality of the supply schedule is given by

(5)	​ p − ​C​ it​ ′ ​​(​S​ it​ ⁎​​(p)​)​  = ​ (​S​ it​ ⁎​​(p)​ − ​QC​ it​​)​ ​ 
​H​ s​​​(p, ​S​ it​ ⁎​​( p)​; ​k​ i​​ , ​QC​ it​​)​  _______________  
​H​ p​​​(p, ​S​ it​ ⁎​​( p)​; ​k​ i​​ , ​QC​ it​​)​

 ​​,

where ​​H​ s​​​ and ​​H​ p​​​ are given by derivatives of equation (3).
There is a simple intuition behind this condition. To see this, for the moment 

ignore the term ​​H​ S​​ / ​H​ p​​​ (it will be positive). The left side is the difference between bid 
prices and marginal cost. Suppose that the firm is a net seller into the market because 
it is supplying more than its contract position (i.e., ​S( · )  >  ​QC​ it​​​). Then the firm 
will have an incentive to bid above marginal cost, i.e., ​p  > ​ C​ it​ ′ ​​, in order to “exer-
cise market power.” The amount of market power is determined by the term ​​H​ S​​ / ​H​ p​​​ .  
The denominator of this term is simply the density of the market-clearing price. The 
numerator is the “market power term,” how much the firm can change the (distribu-
tion of the ) market price by changing its supply bid.

The goal is to find ​​S​ it​ ⁎​​(p)​​ for firm ​i​ in auction ​t​ if the firm is type ​k​: the 
best-response bid function for each firm given its type. In our empirical exercise, 
we will compare the firm’s actual bid to each of these best-response functions to 
make inferences about what type of ​k​-step thinker the bidder is.

We use data and three identifying assumptions to “measure” each component 
of equation (5), which allows us to calculate the best-response function for each 
firm ​i​ in auction ​t​ for each type ​k​. The first assumption defines the bidding behavior 
for type-0 bidders. The assumption has both the properties that it is natural in our 
setting and that it facilitates computation of CH outcomes by allowing us to solve 
the problem recursively. This recursive property yields an additive separability 
condition that makes it computationally straightforward to solve the firm’s expected 
profit maximization problem, as we show below. The second and third assump-
tions define the distribution of types of the CH model and the distribution of the 
remaining sources of uncertainty.

Type-0 Bidding:

ASSUMPTION 1: Type-0 bidders submit perfectly inelastic bids at their contract 
positions. That is,

	​ ​S​ it​ 0​​( p, ​QC​ i t​​)​  = ​ QC​ it​​,  ∀ p  ∈ ​ [​ p _ ​, ​p – ​]​, ∀ i  ∈  ​l​ 0​​,​

where ​​l​ 0​​​ represents the set of bidders type 0.
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This formalizes our observation in Section IIA that the least sophisticated bidders 
use the balancing market to meet any remaining contract obligations but otherwise 
do not participate in the market; they bid vertically at their contract positions.

Type-1 Bidding: Given the assumption about type-0 bidding, we can characterize 
bids for type-1 firms. For a bidder type-1, all rivals are believed to be type-0. Thus, 
we can write ​H( · )​ (equation (3)) for a type-1 firm submitting bid ​​​S ˆ ​​ it​ 1 ​​(p)​​:

​​H​ it​​​(p, ​​S ˆ ​​ it​ 
1 ​​(p)​; ​k​  i​​  =  1, ​QC​ it​​)​ 

	 = ​ ∫ ​QC​−it​​×​l​−i​​×​ε​t​​
​ 

 

 ​​ 1​( ​∑ 
j≠i

​ ​​ ​S​ jt​ 
0​​(p, ​QC​ jt​​)​ + ​​S ˆ ​​ it​ 

1 ​​(p)​ 

	�  ≥  ​D​ t​​​(p)​ + ​ε​t​​)​ dF​(​QC​−it​​, ​l​−i​​, ​ε​t​​ | ​​S ˆ ​​ it​ 
1 ​​(p)​, ​k​  i​​  =  1, ​QC​ it​​)​

	 = ​ ∫ ​QC​−it​​×​l​−i​​×​ε​t​​
​ 

 

 ​​ 1​( ​∑ 
j≠i

​ ​​ ​QC​ jt​​ − ​ε​t​​ 

	 ≥ ​ D​ t​​​(p)​ − ​​S ˆ ​​ it​ 
1 ​​(p)​)​ dF​(​QC​−it​​ , ​l​−i​​, ​ε​t​​ | ​​S ˆ ​​ it​ 

1 ​​(p)​, ​k​  i​​  =  1, ​QC​ it​​)​

	 = ​ ∫ ​QC​−it​​×​l​−i​​×​ε​t​​
​ 

 

 ​​ 1​(​θ​it​​  ≥ ​ D​ t​​​(p)​ − ​​S ˆ ​​ it​ 
1 ​​(p)​)​ dF​(​QC​−it​​, ​l​−i​​, ​ε​t​​ | ​​S ˆ ​​ it​ 

1 ​​(p)​, ​k​  i​​  =  1, ​QC​ it​​)​​,

where the second equality follows from Assumption 1 and the third equality from 
defining ​​θ​it​​  ≡ ​ ∑ j≠i​    ​​​QC​ jt​​ − ​ε​t​​​ .

This tells us that, because a bidder type-1 believes all its rivals are type-0, she 
expects all her rivals to submit perfectly inelastic bids determined by her rivals con-
tract positions (which are private information). Furthermore, conditional on rivals’ 
types, uncertainty in rivals’ ​​QC​ jt​​​ and the aggregate demand shock act as shifters in 
residual demand (but not pivots). Thus, all that matters with respect to uncertainty 
is the distribution of ​​θ​it​​​.

Let ​Γ( · )​ denote the conditional distribution of ​​θ​it​​​ (conditional on the realization 
of all ​N − 1​ draws from the joint distribution of rival types) and let ​Δ​(​l​ −i​​)​​ denote 
the marginal distribution of the vector of rival firm types. Then ​H( · )​ for a type-1 
bidder becomes

	​ ​H​ it​​​(p, ​​S ˆ ​​ it​ 1 ​ ​( p)​; ​k​  i​​  =  1, ​QC​ it​​)​  = ​ ∫ ​l​ −i​​
​ 

 

  ​​​[1 − Γ​(​D​ t ​​​( p)​ − ​​S ˆ ​​ it​ 1 ​​( p)​)​]​ ⋅ Δ​(​l​ −i​​)​​.

Taking derivatives of ​H( · )​ to find ​​H​ S​​​ and ​​H​ p​​​ and plugging into to solve for ​​H​ S​​ / ​H​ p​​​:

	​ ​ 
​H​ s​​​(p, ​S​ it​ ⁎​​( p)​; ​k​  i​​, ​QC​ it​​)​  _______________  
​H​ p​​​(p, ​S​ it​ ⁎​​( p)​; ​k​  i​​, ​QC​ it​​)​

 ​  = ​ 
​∫ ​l​ −i​​

​ 
 

  ​​γ​(​D​ t​​​( p)​ − ​​S ˆ ​​ it​ 1 ​​( p)​)​ ⋅ Δ​(​l​ −i​​)​
   ________________________   

− ​∫ ​l​ −i​​
​ 

 

  ​​γ​(​D​ t​​​( p)​ − ​​S ˆ ​​ it​ 1 ​​( p)​)​ ​D​ t​ ′ ​​( p)​Δ​(​l​ −i​​)​
 ​ .​

The implication is that if type-0 bidders submit perfectly inelastic bids at their con-
tract positions, then the bids of type-1 bidders are additively separable functions of 
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price and private information on their contract positions. Bid functions will take the 
form ​​S​ it​ 1​​(p, ​QC​ it​​)​  = ​ α​ it​ 1 ​​(p)​ + ​β​ it​ 1 ​​(​QC​ it​​)​​, as shown in online Appendix F. This additive 
separability property is valuable because it implies that type-0 rivals’ private infor-
mation about their contract positions does not affect a firm’s residual demand slope, 
as we show below. Unlike type-0 bidders who bid vertically, type-1 bidders submit 
bids that offer some quantity into the market.

Type-k Bidding for ​k  >  1​: For a type-2 bidder, the procedure to derive optimal 
bids is exactly the same, with one difference. Rival firms ​j​ are now either type-0 or 
type-1 with additively separable bids. That is, for a firm bidding ​​​S ˆ ​​ it​ 2 ​​( p)​​:

(6) 

​​H​ it​​​(p, ​​S ˆ ​​ it​ 
2 ​​(p)​; ​k​ i​​  =  2, ​QC​ it​​)​

= ​ ∫ ​QC​−it​​×​l​−i​​×​ε​t​​
​ 

 

 ​​ 1​
(

 ​∑ 
j≠i

​ ​​ ​S​ jt​ 
​l​j​​​ ​(p, ​QC​ jt​​)​ + ​​S ˆ ​​ it​ 

2 ​​(p)​ 

� ≥ ​ D​ t​​​(p)​ + ​ε​t​​)
​ dF​(​QC​−it​​ , ​l​−i​​ , ​ε​t​​ | ​​S ˆ ​​ it​ 

2 ​​(p)​, ​k​  i​​  =  2, ​QC​ it​​)​

= ​ ∫ ​QC​−it​​×​l​−i​​×​ε​t​​
​ 

 

 ​​ 1​
(

 ​∑ 
j≠i

​ ​​​QC​ jt​​ + ​∑ 
j≠i

​ ​​​α​ jt​ 
​l​j​​ ​​(p)​ + ​​S ˆ ​​ it​ 

2 ​​(p)​ 

� ≥ ​ D​ t​​​(p)​ + ​ε​t​​)
​ dF​(​QC​−it​​, ​l​−i​​, ​ε​t​​ | ​​S ˆ ​​ it​ 

2 ​​(p)​, ​k​  i​​  =  2, ​QC​ it​​)​

= ​ ∫ ​QC​−it​​×​l​−i​​×​ε​t​​
​ 

 

 ​​ 1​
(

​θ​it​​  ≥ ​ D​ t​​​(p)​ 

� − ​∑ 
j≠i

​ ​​ ​α​ jt​ 
​l​j​​ ​​(p)​ − ​​S ˆ ​​ it​ 

2 ​​(p)​
)

​ dF​(​QC​−it​​, ​l​−i​​, ​ε​t​​ | ​​S ˆ ​​ it​ 
2 ​​(p)​, ​k​  i​​ = 2, ​QC​ it​​)​​

where, as before, ​​θ​it​​  ≡ ​ ∑ j≠i​    ​​ ​QC​ jt​​ − ​ε​t​​​ , but ​​l​ j​​  ∈  { 0, 1}​. In this way, we can write ​​H​ it​​​ 
just as before but taking into account that ​​θ​it​​​ corresponds to the difference between 
the sum of contract position by rivals and ​​ε​t​​​ .

Taking derivatives of ​H( · )​ to find ​​H​ S​​​ and ​​H​ p​​​ and plugging into to solve for ​​H​ S​​ / ​H​ p​​​:

	​ ​ 
​H​ s​​​(p, ​S​ it​ ⁎​​(p)​; ​k​  i​​, ​QC​ it​​)​  _______________  
​H​ p​​​(p, ​S​ it​ ⁎​​(p)​; ​k​  i​​, ​QC​ it​​)​

 ​  = ​ 
​∫ ​l​ −i​​

​ 
 

  ​​γ ​(​D​ t​​ ​( p)​ − ​∑ j≠i​ 
 
  ​​​α​ jt​ 

​l​j​​ ​​( p)​ − ​​S ˆ ​​ it​ 2 ​​( p)​)​ ⋅ Δ​(​l​ −i​​)​
     _________________________________     

− ​∫ ​l​ −i​​
​ 

 

  ​​γ ​(​D​ t​​ ​( p)​ − ​∑ j≠i​    ​​​α​ jt​ 
​l​j​​ ​ ​( p)​ − ​​S ˆ ​​ it​ 2 ​​( p)​)​ ​D​ t​ ′ ​ ​( p)​Δ​(​l​ −i​​)​

 ​ .​

Therefore, when solving for any type-​k​ bidder for ​k  >  0​, we use this iterative 
procedure that relies on the assumption that type-0 bidders submit perfectly inelastic 
bid functions.

Next, we make assumptions about ​​Δ​i ​​( · )​ and ​​Γ​i​​ ( · )​. For the distribution of 
types, ​​Δ​i​​ ( · )​, we follow the literature and assume that the distribution is Poisson. 
This distribution has a single parameter that characterizes firm types and has sev-
eral intuitively appealing game theoretic properties, as described in Camerer, Ho, 
and Chong (2004). Specifically, we assume the following.
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ASSUMPTION 2: ​Δ( · )​ is an independent multivariate Poisson distribution 
truncated at ​k − 1​, as given by the Poisson cognitive hierarchy model.

Finally, we assume ​​Γ​i​​​ to be a uniform distribution. We make this assumption 
primarily for computational convenience. Although other distributions could be 
used, this would increase computational cost significantly.22 Thus, we assume the 
following.

ASSUMPTION 3: ​​Γ​i​​ ( · )​ is a uniform distribution.

We are now prepared to characterize bid functions for each firm type in a manner 
so that we can use realized data from each auction to characterize ex  ante bids 
submitted by each firm-type under the CH model.

For a type-1 bidder, under these assumptions, the first order-condition can be 
written as

	​ p − ​C​ it​ ′ ​​(​​S ˆ ​​ it​ k ​ ​( p)​)​  = ​   1 ______ 
− ​D​ t​ ′ ​​( p)​ ​ × ​[​​S ˆ ​​ it​ k ​​( p)​ − ​QC​ it​​]​ 

	 = ​   1 _______ 
− ​RD​ t​ ′ ​​( p)​ ​ × ​[​​S ˆ ​​ it​ k ​​( p)​ − ​QC​ it​​]​​,

where the second equality follows from the fact that for ​RD​( p)​  
=  D​( p)​ + ε − ​∑ j≠i​    ​​​ S​ jt​​ ​( p)​  =  D​( p)​ + ε − ​∑ j≠i​    ​​​QC​ jt​​ ​. Hence, ​RD′​( p)​  =  D′​( p)​​ for 
all ​p​.

It is computationally straightforward to calculate the ​​​S ˆ ​​ it​ k ​​( p)​​ that solves the equa-
tion above. For each firm-auction, we observe the bid function’s price, marginal cost 
(​​C​ it​ ′ ​​(​​S ˆ ​​ it​ k ​​( p)​)​​), and the slope of residual demand (​− ​RD​ t​ ′ ​​( p)​​). And we can measure 
the firm’s contract position in the balancing market (​​QC​ it​​​) by calculating the quan-
tity at which the bid function intersects the marginal cost function. The rationale 
for this method to measure the contract position is as follows. For type ​k  >  0​, 
the first-order condition above says that the firm bids a price above (below) mar-
ginal cost for quantities greater (less) than the contract position, and the markup 
(markdown) depends on beliefs about the shape of residual demand which is driven 
by beliefs about rival behavior.23 For type-0 firms, we identify the contract position 
by assuming that type-0 firms use the balancing market to true-up any residual con-
tract position not satisfied with the day-ahead schedule. Note that this assumption 
is consistent with non-strategic behavior; it says that the firm’s action in the auction 
plays the role of fulfilling the contract position but does not depend on any beliefs 
about how rival firms behave.

22 The researcher needs to solve the first-order condition looking for a fixed point in ​​S​ it​ 
​l​j​​​​(p)​​ for every bidder ​i​ 

of type ​l​ in auction ​t​ at point ​p​. This is computationally very expensive in a setting with 12 firms. For this reason, 
instead of reducing the number of firms included in the CH and estimating the model using a different distribu-
tion ​​Γ​i​​​ , we examine the extent to which our assumption may impact our results in a different way. Specifically, we 
use the estimated parameters that we report in Section VC and predict bidding behavior assuming that ​​Γ​i​​​ is uniform 
and that ​​Γ​i​​​ is Normal and compare the distribution of predicted bids. The results, presented in online Appendix G, 
show that the differences are minimal.

23 This method of identifying the firm’s contract position is shown formally in Proposition 1 of HP.
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This yields a straightforward method to calculate firm ​i​’s best-response bid func-
tion for any type ​k​. To see this, note that the equation above is just the familiar 
“inverse elasticity pricing rule.” Firm markups of bid over marginal cost are inversely 
proportional to their residual demand elasticity. Each component of the residual 
demand function can be iteratively solved for, using our data and Assumptions 1–3.

In our implementation of the model, 12 firms are included in the cognitive hier-
archy and the remaining firms are included as an unmodeled fringe, as we discuss 
above. Thus, the ​D​( p)​​ in the theoretical model corresponds to balancing demand 
(which is perfectly inelastic) net of (elastic) supply by the unmodeled firms. In this 
context, our model would imply that there is no uncertainty about the slope of the 
supply of the unmodeled firms. While it may not be literally true that there is no 
uncertainty, to a first-order, there is not economically significant slope uncertainty, 
as we show in online Appendix H.

V.  Model Estimation and Results

A. Identification

Firms’ beliefs about rival types determine bidding strategies. For this reason, 
it is important to discuss the process of how beliefs are formed before we turn to 
estimation. At the same time, because discussing how beliefs are formed is equiva-
lent to discussing identification of the parameters of interest, this section informally 
discusses how our data identify the relationship between firm characteristics and 
strategic type.

Under CH, all firms best-respond given their beliefs about their rivals’ bidding 
behavior. If a firm is deviating from (realized) best-response in an auction, the 
model provides beliefs about rival behavior that rationalize the observed bid as 
a best-response to those beliefs. Rivals’ characteristics are informative about the 
distribution of rivals’ types, so beliefs about rivals’ types are modeled as a func-
tion of rivals’ observable characteristics. CH models this relationship as a truncated 
Poisson distribution with a parameter ​τ​, which is a parameterized function of firms’ 
characteristics ​​X​ i​​​ (i.e., ​​τ​i​​  =  exp​(​X​ i​ ′ ​ γ)​​).

Consider a given parameterized relationship between type and a firm 
characteristic such as size. A firm observes each rival’s size and forms beliefs about 
the rival’s type distribution based on that relationship. The firm can calculate each 
rival’s bid function under those beliefs. For example, a firm that is type-5 can use 
the relationship between size and type to compute how rivals will bid; this yields 
a residual demand function to which the type-5 firm best-responds. As analysts, 
we can perform the same calculation and compute the best-response, not only for 
a type-5 firm but for any type from ​k  =  0, …, K​. Then we can compare the firm’s 
actual bid to each of the type-​k​ bids. This calculation is based on a particular param-
eterized relationship between size and type. Our estimation strategy is to search 
for the parameter relating size to type that minimizes a metric of distance between 
observed and CH-computed bids, as we describe in detail in Section VB.

The identification of the parameters of firm type is intuitive. For example, 
consider the case with a single firm attribute ​​X​ i​​​, so that the index of the ​​τ​i​​ ( · )​ func-
tion is ​exp​(​γ​0​​ + ​γ​1​​​X​ i​​)​​. First, consider the variation in the data that identifies ​​γ​1​​​ when 
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we hold ​​γ​0​​​ fixed. To make the presentation clear, Figure 5 presents the identification 
strategy considering three firms, ​i​, ​j​, and ​k​, and explains how ​k​’s bids can be used to 
identify ​​γ​1​​​, holding ​​γ​0​​​ fixed. Suppose that ​​X​ i​​​ is firm size so that ​​γ​1​​  >  0​ implies that 
larger firms are higher types and ​​γ​1​​  <  0​ implies that larger firms are lower types. 
Under CH, the observed bids are best-responses given beliefs about the residual 
demand function that firm ​k​ faces. For simplicity, suppose firm ​k​ faces a small (​i​) 
and a large ( ​j​) firm. If ​​γ​1​​  >  0​, firm ​i​ will offer less capacity into the market than 
firm ​j​, both because it has less capacity to offer than ​j​ and because it is a lower type 
than ​j​. These offers are presented in panels A and B of Figure 5. This will cause 
firm ​k​ to believe it faces a relatively elastic residual demand, presented in panel C of 
Figure 5 as ​​RD​ ​γ​1​​>0​​​. In contrast, if ​​γ​1​​  <  0​, firm ​k​ believes that the large rival will not 
offer much capacity into the market, but rather that the small rival will do so. That 
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Panel B. Firm j (large)

Figure 5. Example of the Identification Strategy

Notes: The figure presents the identification strategy using a stylized example with three firms. The figure explains 
how bids of firm k can be used to infer k’s beliefs regarding the type of its rivals i and j.
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is, ​k​ believes that firm ​i​ will submit ​​S​ ​γ​1​​<0​ i  ​​, and that firm ​j​ will submit ​​S​ ​γ​1​​<0​ 
j  ​​, presented 

in panel A and panel B of Figure 5, respectively. This causes the residual demand 
faced by firm ​k​ in this case (​​RD​ ​γ​1​​<0​​​ in panel C) to be more inelastic than the one it 
faces when ​​γ​1​​  >  0​, because the only rival firm with substantial capacity is a low 
type and low-type firms offer less capacity.

The arguments presented above imply that we can use ​k​’s bids to identify the rela-
tionship between size and firm type, as the identification question to be addressed 
is whether ​k​’s bids are more consistent with best responding to the relatively elastic 
(​​RD​ ​γ​1​​>0​​​) or relatively inelastic residual demand (​​RD​ ​γ​1​​<0​​​). Point identification of ​​γ​1​​​ 
is achieved by exploiting both the variation in firm characteristics ​​X​ i​​​ and that ​τ​ is 
a continuous function of ​​γ​1​​​. This is, if ​​γ​ 1​ ′ ​  <  ​γ​ 1​ ″​​, ​​γ​ 1​ ″​​ induces a flatter bid submitted 
by ​k​ than ​​γ​ 1​ ′ ​​, holding ​​X​  i​​​ fixed for all ​i​, because a higher ​​τ​i​​​ shifts the type distribution 
to the right.

Consider now the identification of ​​γ​0​​​. This parameter is identified as long as not 
all firms bid as level-0 firms do. To see this, assume that firms can be classified into 
two groups. One group bids vertically (e.g., level-0), while another group bids in 
some capacity into the auction. Then, holding ​​γ​1​​​ constant, ​​γ​0​​​ allows the model to 
explain the fraction of firms that follow level-0 behavior. Therefore, if a firm that was 
classified in the vertical bidding group were to bid some capacity into the market 
(i.e., it is reclassified into the second group), this will be reflected by increasing ​​γ​0​​​ 
to rationalize the lower fraction of type-0 firms.

Implications of the Level-0 Assumption.—As discussed in Section  IIIB, our 
assumption about the bidding behavior of level-0 players is supported by the 
behavior that is observed in the data. Nonetheless, it is important to discuss how 
alternative assumptions would impact our results. To organize our discussion, 
we divide alternative assumptions for level-0 behavior in two groups. Consider 
Figure 6, which depicts a simplified version of best-response bidding. One cat-
egory of level-0 behavior yields low types bidding vertically and higher types 
submitting flatter bids, or loosely put, higher types approaching best-response bid-
ding “from the left.” Another category yields low types bidding relatively flat (e.g., 
marginal cost) and higher types submitting steeper bids, or higher types approach-
ing best-response bidding “from the right.” As we discuss in online Appendix I, 
our data refute marginal cost bidding, though we still discuss the implications of 
this assumption.

First, consider assumptions in which as firm type increases, bids get flatter and 
approach best-response bids from the left (area A in Figure 6). In this case, profits 
increase as firms bid flatter. Our assumption about level-0 behavior is one of these. An 
alternative, also non-strategic, is to assume that level-0 behavior is that of a monopoly. 
In this case, level-0 players best respond to the residual demand function that results 
from subtracting fringe supply from balancing demand. Higher type bidders would 
simply best-respond to level-0 players that assume they are monopolies. This assump-
tion is similar to the one that we make, but it assumes that level-0 players bid with pos-
itive slope even for relatively low prices and small quantities, while our assumption is 
that they bid vertically on their contract positions. Because in our data level-0 bidders 
are effectively not providing power to the grid, and bid vertically for most prices, we 
believe our assumption reflects what we observe in a better way. This also implies that 
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if we were to assume that level-0 bidders behave as monopolists, the model would fit 
the data worse than under the assumption that these bidders bid vertically.

Next, consider alternatives in which as type increases, bids approach best-responses 
from the right (area B in Figure 6). Some of these alternatives include level-0 players 
that bid their marginal cost, or that bid a constant or proportional markup over marginal 
costs (i.e., a rule of thumb). These assumptions are also non-strategic but they result 
in higher-type rivals bidding steeper than level-0 players and both bids approaching 
best-responses from the right and profits increasing as firms bid steeper. Because 
these alternatives result in predicted bids far from those we observe in the data, any 
assumption that leads to bids approaching best-responses from the right will result in 
our model performing worse. Because bids would converge to best-responses from 
the right, the model would never predict bids that are in the neighborhood of those 
that we observe (i.e., bids would never be steeper than best responses).

In summary, although one could make alternative assumptions about level-0 
behavior, our assumption is driven by what we observe in the data and our  
knowledge of how these firms determine their bidding strategies.

B. Details on Estimation

Estimation follows a minimum-distance approach. Here, ​​τ​i​​​ is a scalar that 
provides information about firm ​i​’s type. We assume that ​​τ​i​​  =  exp​(​X​ i​ ′ ​γ)​​ and, 
because ​​X​ i​​​ is public information, so is ​​τ​i​​​. Each firm ​i​ observes ​​τ​−i​​​, the vector of ​τ​ s 
of its rivals. Also, each firm ​i​ has private information about its own type. Assume 

MCiQC SBR

BA

Q

P

Figure 6. Bids Approximating Unilateral-Best Response as a Function of the Level-0 Assumption

Note: The figure presents the direction in which bids would approximate the unilateral best-response bid depending 
on the assumption made about level-0 bidding behavior.
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firm ​i​ is type ​k  ∈ ​ { 0, …  , K  }​​ and the type does not change over time. If ​k  =  0​, 
then, by Assumption 1, firm ​i​ would submit a vertical bid at its own contract posi-
tion, regardless of its rivals. For all ​k  >  0​, firms have beliefs about its rivals’ types. 
Specifically, by Assumption 2, these beliefs are assumed to follow a Poisson distri-
bution truncated at ​k​, meaning that firm ​i​ believes all its rivals to be type ​k − 1​ or 
less. The probability associated with each type varies according to each rivals’ ​τ​.

Then, we use the model to compute, for each firm ​i​ and auction ​t​, the optimal bid 
function given ​i​’s type and its beliefs over its rivals’ types. Note, however, that in a 
specific auction, even if two bidders are of the same type, differences in marginal 
costs will generate differences in predicted bids.

Once firm ​i​ has computed what it expects its rivals to do for each possible type, 
it maximizes expected profits according to its beliefs about its rivals’ types. This 
results in a bid function, conditional on ​i​’s type. Therefore, we compute ​i​’s bid for 
all possible types that firm ​i​ can be. Because ​i​’s actual type is unknown to the econo-
metrician, we proceed in several steps.

First, we compute bid functions over a grid of price points that are centered at the 
realized market-clearing price. Second, for each auction ​t​ and bidder ​i​, we compute 
the difference between the realized bid (data) and the bid predicted by the model, at 
each price point ​p​, for each type ​k​ that firm ​i​ can be. However, because firms differ in 
capacity, we scale these differences by the quantity-difference between the predicted 
bid for each firm for types ​K​ and 0. Third, to compute the total difference between 
a predicted bid function and the bid data, we sum the quantity differences across all 
the price points in the grid, for bidder ​i​ in auction ​t​, when ​i​ is type ​k​. Because we 
are primarily concerned about differences that take place in the neighborhood of the 
market-clearing price, we weight price points by a triangular distribution centered 
at the market-clearing price.

Fourth, after we have computed the weighted quantity differences between the 
predicted bids for firm ​i​ (for each of its possible types ​k​) and the bid data, we weight 
each of these differences by the probability that the firm is each type ​k​. This proba-
bility is modeled as a Poisson distribution truncated at the number of possible types 
considered in estimation (level-0 and 20 levels of strategic sophistication). We use 
each firms’ ​τ​ to compute this probability. Finally, we add over firms and auctions.

In this context, our estimate ​​γ ˆ ​​ is

	​​γ ˆ ​  =  ​argmin​ 
γ
​ ​ ​ ∑ 

i
​ ​​ ​∑ 

t
​ ​​​[​∑ 

k
​ ​​​[​∑ 

p
​ ​​ ​​(​ 

​b​ it​ data​​( p)​ − ​b​ it​ model​​( p | k)​
   __________________   

​b​ it​ model​​( p | K)​ − ​b​ it​ model​​( p | 0)​
 ​)​​​ 

2

​ × P​( p)​]​​P​ i​​​(k  |  |K | , ​γ ˆ ​)​]​.​

In estimation, we use a large grid of initial points to explore the reliability of our 
estimation routine in converging to the global minimum. Finally, we compute 
standard errors using 250 Bootstrap samples.

C. Results: Estimated Parameters

Results are reported in Table 1. We estimate seven specifications that differ in 
the observable characteristics (​​X​ i​​​) of the firms that affect firm ​​τ​i​​​ . In our baseline 
specification column, type is determined by firm size. As a metric of size in the 
balancing market, we seek a metric of the firm’s potential stakes in the balancing 
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market that is exogenous to its realized bidding behavior. We compute the quantity 
of sales if the firm were to best-respond, averaged across all auctions. This is posi-
tively correlated with installed generation capacity.

As shown in column 1, we find that larger firms are higher types.24 In order to 
interpret the positive coefficient on ​Size​, we calculate the implied distribution of 
firm type for each of the 12 firms that we include in the cognitive hierarchy model. 
Figure 7 plots the estimated type distribution for a set of firms ranging from the 
smallest to the largest. Consider the smallest firm with a size that is 11 percent of 
the size of the largest firm: the CDF farthest to the left in the figure. We estimate that 
the smallest firm has about a 50 percent chance of being type-0, about a 35 percent 
chance of being type-1, about a 10 percent chance of being type-2, and is higher 
than type-2 with very low probability. Each of the other CDFs in the figure show 
the estimated type distribution for other firms, with the larger firms having proba-
bility distributions further to the right. Overall, we find that larger firms are likely 
to be higher type, and importantly, there is substantial heterogeneity across these 
firms in the estimated types. This means that only the largest firms actually engage 
in behavior that is similar to what a Bayesian Nash model would predict. Finally, 
it is important to note that our estimates are robust to the time period considered in 
estimation. Specifically, in online Appendix J we show that the relationship between 
size and type is robust to considering a different period of the day (7–8 pm).

24 We expect the constant to be negative in order to rationalize level-0 players because a positive constant would 
decrease the probability of observing a level-0 player significantly. Note, however, that this is not required by the 
CH model as one need not observe level-0 behavior in the data. However, as we have specified level-0 behavior 
according to what we observe in our data, a negative constant shows that the type of level-0 behavior that we have 
assumed is not uncommon.

Table 1—Structural Model: Estimated Parameters of Type Function

(1) (2) (3) (4) (5) (6) (7)

Constant −0.726 −0.196 −3.395 −0.749 −3.493 −0.691 −0.675
(0.031) (0.037) (0.269) (0.049) (0.796) (0.041) (0.072)

Size 14.594 −1.163 25.789 13.619 3.090 11.933 13.776
(0.301) (0.464) (3.385) (0.603) (0.847) (0.546) (0.629)

Size​​​​​ 2​​ 86.191
(4.035)

Merchant −1.562
(0.295)

AAU University 0.376
(0.059)

Degree in economics, 5.626
  business or finance (0.764)
Economics degree 1.633

(0.115)
Time trend 0.051

(0.016)
Obj. fn. / number of auctions 208.512 208.354 208.526 208.485 206.386 208.308 208.520

Notes: This table reports estimated parameters of our Cognitive Hierarchy model that are estimated using the 
minimum distance estimator described in Section VB. Each column reports estimates for different parameteriza-
tions of ​​τ​i​​​(​X​ i​​)​.​ Bootstrapped standard errors are calculated using 250 samples. 
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We illustrate the model’s fit for the same firms that we use to illustrate bidding 
in Section IIA. Figure 8 displays actual bid functions as well as bid functions for 
different type-k models, as predicted by the ​Size​ specification of our model. We 
plot the predicted CH bids for type-0 through type-5. The vertical CH bid is, by 
Assumption  1, submitting a perfectly inelastic bid at the contract position. The 
remaining bids depict predicted bids for type-1 through type-5, with higher types 
uniformly flatter. The largest differences between bid functions are for the lowest 
type; in this example, bids for type-4 and type-5 are very similar. Higher type bids 
converge rather quickly and we do not see any “cycles” in bids as types increase. 
Intuitively, because higher types believe their rivals will bid more capacity into the 
market, the best-response bid to those beliefs is to bid more capacity in the market.

We also explore other specifications of how firm characteristics relate to type. 
The second specification in Table 1 allows for nonlinearity in how size affects ​​τ​i​​​ by 
adding size squared. The implied distribution of types is qualitatively very similar 
to our linear specification.

Next we explore if the organizational structure of the firm is associated with 
higher type. As discussed in Section I, some firms are merchant firms that have 
never been part of a regulated utility while other firms are either municipal utili-
ties or generation firms that were formerly integrated into an investor-owned utility. 
It is possible that organizational structure could impact the nature of the trading 
operations that a firm establishes. In column 3 of Table 1, we test whether merchant 
firms tend to be higher types. However, we find that if anything, merchants are lower 
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Note: The figure presents the cumulative distribution function of types, for four firms in the cognitive hierarchy.
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types than former utilities and municipal utilities. However, the role of organiza-
tional structure is substantially smaller than the role of firm size.

In specifications 4–6, we investigate whether the personnel hired to run firm bid-
ding operations is related to firm type. In order to assess the role of personnel, we 
use LinkedIn and other publicly available online data sources to make the best guess 
of the manager(s) who were responsible for each firm’s power marketing operations 
at the time. In some cases, job titles were sufficiently clear to identify the power 
marketing manager, and in other cases we were only able to identify personnel who 
were involved in firm wholesale power operations. Therefore, the data used for this 
specification may not be as precise as the data on bids and costs. Nevertheless, this 
provides suggestive evidence on the role of power trading personnel. For each firm 
manager whom we identify, we collect information on job title and education. For 
each firm, we create an ​AAU University​ dummy variable to indicate whether any of 
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the firm’s power marketing personnel have a degree from a university that belongs 
to the American Association of Universities (AAU).25 Five of the twelve firms have 
personnel who graduated from an AAU university. We also create a dummy variable 
for whether any personnel have a degree in either economics, business, or finance. 
Seven of the twelve firms have personnel with a degree in economics, finance, or an 
MBA while the most popular other type of degree is in engineering. We estimate our 
benchmark specification using ​Size​ and add dummy variables for university type or 
degree type.

Our specifications with personnel are reported in columns 4– 6. We find that when 
we include AAU in addition to firm size in column 4, the AAU coefficient is positive 
and the coefficient of size is slightly lower. We find similar patterns when we include 
a dummy for degree in economics, finance, or business: the coefficient is positive 
and the coefficient of size falls significantly. These results suggest one mechanism 
through which size may affect the level of strategic sophistication. Discussions with 
industry personnel suggest that the dollar stakes of each firm are likely sufficient to 
cover the costs of establishing a basic trading operation. But only larger firms may 
have sufficient dollar stakes to hire high-quality and well-trained traders and to build 
sophisticated trading operations. This is consistent with our finding that once we 
control for whether personnel are trained in economics, finance, or have an MBA, 
that the relationship between size and type is weaker.

Finally, we explore the possibility that firms may learn over time. To do so, we 
specify ​τ​ as a function of firm size and a linear time trend. The results are reported 
in the last column of Table 1 and show that the estimated coefficients for the con-
stant and size are remarkably similar to those in column 1. Nonetheless, we find a 
positive and significant coefficient on the time trend, which suggests that firm types 
do change over time. However, the amount of learning is economically very small 
and the implied probability distributions over types, for the first and last week of our 
sample period overlap perfectly (see online Appendix Figure K.1). This suggests 
that learning is minimal and has no meaningful impact on the estimated probability 
distributions over types.

D. Model Fit

In this section we show that the CH model, with our parameterization of size deter-
mining beliefs, fits the actual bidding behavior quite well. To assess the model fit, 
we use the specification where ​Size​ determines firm type and subsequent bidding 
behavior (column 1 of Table 1). It is important to note that this specification is very 
parsimonious; we are using only one characteristic, size, to fully characterize a firm 
and to predict bids.

We compare the fit of the CH model to a model in which firms best-respond 
to their rivals’ actual bid data; this best-response model is essentially a model 
in which firms  individually best-respond and have consistent beliefs about their 
rivals’ behavior. Table 2 reports results from a regression at the firm-auction 
level that predicts realized profits under actual bidding with profits under 

25 The AAU includes 62 private and public research universities in the United States and Canada.
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either the CH model (column  1) or best-response model (column 2). The CH 
model fits the actual data better than the best-response model. The coefficient 
of modeled profits is much closer  to unity for the CH model (​​​β ˆ ​​​ CH​  =  0.803​  
versus ​​​β ˆ ​​​ BR​  =  0.428​) and the CH model explains more of the variation in 
firm profits (​​R​ CH​ 2  ​  =  0.67​ versus ​​R​ BR​ 2  ​  =  0.49​). When we include profits under 
both models of behavior in column 3, we find that once we include CH profits, 
the best-response profits do not help predict actual profits in an economically 
meaningful way. Moreover, we view the fit of the CH model as strong given that 
we are using only a single covariate, firm size, to explain the heterogeneity in 
behavior across firms.

E. Interpretation of Model in Context of Management Practices

In the context of the Texas electricity market, we interpret the CH framework 
as an “as-if ” model capturing the real-world management practices of the market 
players. Our perspective into management practices of these firms is shaped by 
interviews we conducted with some of the firms in 2004. Unfortunately, we did not 
plan a systematic survey, so the information we gathered from these site visits is 
anecdotal in nature. However, one salient impression is that larger firms had many 
more resources devoted to trading operations, which included large trading floors, 
several employees with a PhD, and specially developed software applications to 
gather market information and compute bids. In contrast, trading operations at 
smaller firms appeared much more thinly staffed, with employees who appeared to 
specialize in operational/engineering details of the plant rather than in trading. In 
the smaller firms, the employees whom we spoke with had less time to devote to 
balancing market bidding and did not appear to conceptualize the market in terms 
of “residual demand.”

The interviews suggest that the nature of scale/size effects is that larger firms 
have enough resources to hire technically sophisticated trading staff who have 
the latitude to reflect upon and optimize bidding operations to improve profits. 
As we discuss above, because most of the generation volume is sold in forward 

Table 2—Model Fit: Comparison of Cognitive Hierarchy Model to Unilateral Best-Response Model

CH BR Both
(1) (2) (3) 

Profits under cognitive hierarchy 0.803 0.642
(0.069) (0.127)

Profits under best-response 0.428 0.137
(0.044) (0.062)

Constant −328.17 −241.74 −374.17
(141.98) (120.72) (125.79)

Observations 1,058 1,058 1,058
​​R​​ 2​​ 0.67 0.49 0.69

Notes: This table reports results from a regression of observed profits from actual bidding behavior on firm profits as 
predicted by the Cognitive Hierarchy model (column 1), firm profits that would be achieved from a model of unilat-
eral best-response to actual rival bids (column 2), and both (column 3). An observation is a firm-auction. Standard 
errors clustered at the firm level are reported in parentheses. 
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contracts, the balancing market volume comprises a small share of the quantity 
of electricity traded. While this does not mean that the balancing market is 
unimportant in terms of overall profits, the profit potential from this market may 
appear unimportant to smaller firms, who, in turn, may not devote many resources 
to “thinking strategically” about this market. This may rationalize strategies like 
vertical bidding, which essentially means that the firm is avoiding the balancing 
market altogether.

Although there is no direct mapping from type to business practice, one could 
conceptualize the correspondence in the following way: level-0 firms may mis-
understand opportunity costs and fail to recognize the profit opportunities of sell-
ing excess capacity to the balancing market. Low-level types may understand the 
potential profitability but not invest great effort in back-end software and rather 
use rule-of-thumb heuristics. And high-level types may invest person-power to 
estimating residual demand, perhaps using the lagged bid data that the market 
operator posted. And, finally, because there was persistence in the personnel that 
ran bidding operations over our sample period, minimal evidence of learning may 
be present.

VI.  A Reduced-Form Test of Strategic versus Non-Strategic Behavior:  
Evidence from a Nuclear Plant Outage

In this section, we show additional data-driven support for the CH model and our 
results. In general, in the CH model, level-0 behavior captures non-strategic agents. 
One type of non-strategic behavior is an agent who does not respond to changes 
in the (common knowledge) cost structure of its competitors, but may respond 
to changes in its own costs. Note that this definition of non-strategic behavior 
encompasses a large array of behavioral patterns that have been considered as 
level-0 behavior in the literature. Patterns such as vertical bidding, which is our 
definition of level-0 behavior, bidding marginal cost (or bidding truthfully, as in 
Crawford and Iriberri 2007, Gillen 2010, and An 2017), bidding a random num-
ber that is independent of competitors’ costs (again, as in Crawford and Iriberri 
2007, Gillen 2010, and An 2017), or behaving as if one is a monopolist regard-
less of one’s competitors (as in Goldfarb and Xiao 2011) are consistent with this 
definition of non-strategic behavior.

We use a two-month outage at a nuclear plant to test whether firms change bids 
in response to competitor cost shocks. In the middle of our sample period, one large 
nuclear generator went off-line for about two months. This event suddenly reduced 
nuclear output by about 2,300 megawatts. As a result, total demand for power inter-
sected aggregate system marginal cost at a steeper point on the marginal cost func-
tion. Firms that behave strategically will recognize that this publicly observable cost 
shock is likely to make their residual demand in the balancing market less elastic. 
Therefore, all else equal, we expect strategic firms to respond to the nuclear outage 
by submitting steeper bids.

We test this hypothesis and find that large firms respond to both competitor costs 
and own costs, but that small firms only respond to own costs. To do so, we analyze 
the slope of firms’ bid functions in the months surrounding the nuclear outage and 
test whether bids are “steeper” during the outage. We create a panel of firm bids 
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across each auction in our sample. The dependent variable is the (inverse) slope  
(​∂ ​S​ it​​ / ∂ p​) of firm ​i​’s bid in auction ​t​.26 The variable ​​Outage​ t​​​ is an indicator equal to 1 
if the auction occurred during the outage period of October 2, 2002 to November 27, 
2002 and equal to 0 if the auction occurred prior to the outage. Firms strategically 
responding to the outage face less elastic residual demand and thus will submit bids 
with smaller inverse bid slope.

Results are shown in Table 3. We estimate the effect of the outage separately for 
the largest three and smallest three firms. In columns 1 and 4, we estimate the slope 
of bids only as a function of the outage. The largest three firms submit bid functions 
that are “steeper ” (i.e., ​∂ ​S​ it​​/∂ p​ is smaller) during the outage, but the smallest three 
firms do not change the slope of their bids during the outage. In columns 2 and 5, we 
control for changes in own costs by including a measure of the firm’s own marginal 
cost function: the (inverse) slope of the firm’s MC (​∂ ​q​ it​​/∂ MC​). Both small and large 
firms submit steeper bids in response to changes in their own marginal costs; when 
marginal cost is flatter (​∂ ​q​ it​​/∂ MC​ is larger), the firm submits a flatter bid function 
(i.e., ​∂ ​S​ it​​/∂ p​ is larger). However, only the large firms respond to the outage by sub-
mitting steeper bids. In columns 3 and 6, we add bidder fixed effects to allow for 
firms to face different shaped residual demand functions in general. We find robust 
evidence that all firms respond to their own cost shocks, but only large firms respond 
to the large rival cost shock induced by the nuclear outage. We find similar results 
when we analyze all 12 firms and define large (small) as all firms above (below) the 
median size firm.

26 We measure slope as the bid linearized plus and minus $10 around the auction’s market-clearing price  
($10 is the standard deviation of the market-clearing price in our sample).

Table 3—Evidence of Non-Strategic Bidding: Bidding Response to Nuclear Outage

Largest three firms Smallest three firms

(1) (2) (3) (4) (5) (6)

Outage −47.81 −31.13 −19.42 −0.02 0.17 0.36
(7.50) (8.30) (5.19) (0.18) (0.19) (0.18)

Own MC ​​(​ ∂ ​q​ it​​ _ ∂ MC
 ​)​​ 0.15 0.26 0.04 0.09

(0.05) (0.04) (0.01) (0.01)
Constant 73.42 38.08 −8.61 1.32 0.65 0.63

(7.18) (12.37) (8.84) (0.12) (0.18) (0.19)
Bidder fixed effects No No Yes No No Yes

Observations 189 189 189 189 189 189
​​R​​ 2​​ 0.21 0.25 0.59 0.00 0.17 0.25

Notes: In all columns, the dependent variable is the slope of each firm’s inverse bid function in auction ​t​ ​​(∂ ​S​ it​​/∂ p)​​. 
Each column reports estimates from a separate regression of the slope of a firm’s bid function on an indicator vari-
able that the auction occurred during the fall 2002 nuclear outage. An observation is a firm-auction. The dependent 
variable is the slope (​∂ ​S​ it​​/∂ p​) of firm ​i​’s (inverse) bid function in auction ​t​ where the slope is linearized plus and 
minus $10 around the market-clearing price. ​Own MC​ is the slope of the firm’s own (inverse) marginal cost function 
linearized plus and minus $10 around the market-clearing price. White standard errors are reported in parentheses. 
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VII.  Out-of-Sample Prediction

We find that the CH model is better at predicting bidding behavior out-of-sample 
than a best-response model. To do so, we re-estimate the CH model using a sub-
sample of auctions that excludes the outage period described in the previous 
section. Then, we use the estimated parameters from this restricted sample to 
predict equilibrium outcomes during the outage. Using the baseline CH  model 
where type is parameterized to firm size, we predict each firm’s profit in every 
auction for the auctions that occurred during the nuclear outage. Then we use a 
regression-based approach to measure whether profits achieved from the firms’ 
actual bidding behavior is better explained by the CH model or a model of  
unilateral best-response.

Results are shown in Table 4. Column 1 shows that actual profits are only weakly 
correlated with profits predicted by a best-response model, while column 2 shows 
a much stronger correlation between actual profits and profits predicted by the 
CH model. Column 3 shows a “horse race” between the two models and suggests 
that our CH model outperforms a model of unilateral best-response.

VIII.  Counterfactuals: Increasing Strategic Sophistication

Having estimated our model of bidding behavior that allows for heterogeneity in 
strategic sophistication, we now turn to a key question of this paper: how does the 
lack of strategic sophistication affect market efficiency? We address this question in 
two steps.

First, we consider how increasing firms’ sophistication, without changing 
market  structure, affects market efficiency. Several events could cause firms to 
become more strategically sophisticated. For example, a firm could hire more quali-
fied managers, perhaps with backgrounds associated with higher types (e.g., training 
in economics/business/finance or educated at an AAU institution). Alternatively, a 
firm could hire a consulting company to take over its bidding operations rather than 
use in-house personnel. Or perhaps the grid operator (which is a nonprofit entity 
with public interests) could distribute “teaching material” about how bidding ver-
tically sacrifices profit-making opportunities. Under these counterfactuals, market 
efficiency will increase if more sophisticated bidding leads to more elastic bids and 
causes a firm’s low-cost generation to be offered into the market.

Second, we estimate the impact on efficiency of increases in sophistication that 
are caused by large high-type firms merging with smaller lower-type firms. Suppose 
that when the two firms merge, the trading operation of the larger firm takes over all 
bidding operations, so the merged firm enjoys the sophistication level of the large 
firm. The effect of such mergers is ex ante ambiguous. On one hand, more sophis-
ticated bidding of the small firm’s generation assets is likely to cause lower-cost 
plants to be dispatched. On the other hand, mergers increase concentration and 
increase market power. We estimate which effect dominates for mergers between 
firms of different sizes.27

27 The merger counterfactual also could represent a less extreme contractual relationship between two firms in 
which the low-type firm contracts out bidding operations to the high-type firm.
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Mechanically we compute counterfactuals by using the firm-specific estimated 
probability distribution over types (presented in Figure 7) to take 1,000 draws with 
replacement of the type of each firm in the CH. We then solve for the equilibrium for 
each auction and average generating costs over the 1,000 replications. It is import-
ant to note that only a subset of firms in the market are included in the cognitive 
hierarchy; the remaining firms are part of a unmodeled fringe. For this reason, we 
compute inefficiencies as the difference between the generating cost implied by the 
estimated model and our efficient benchmark in which all firms included in the CH 
bid marginal costs, while the rest of the firms bid according to their bids in the data. 
We present the counterfactuals for our benchmark specification where firm type is 
a function of size.

A. Increasing Sophistication without Changing Market Structure

Increases in sophistication that do not impact market structure, such as hiring 
a consulting firm to take over bidding operations or hiring better managers, will 
impact efficiency through two channels. First, if firms are induced to be higher-type 
thinkers, the bid functions will become “flatter” because beliefs that rivals are higher 
types imply that the firms believe their residual demand to be more elastic. As a 
result, more low-cost generation capacity will be offered into the balancing market 
and production costs will fall. This is the direct effect of increasing sophistication.

However, there is also a second indirect impact on efficiency. Suppose that the 
increase in sophistication is publicly observable (e.g., rivals observe that the firm 
hires a bidding consultant). Then rival firms recognize the increase in sophistication 
(even though their beliefs will continue to be wrong) and also submit more elastic 
bids.

We simulate the effects of increasing the strategic sophistication of firms of dif-
ferent sizes. It is a priori ambiguous which types of firms would most improve mar-
ket efficiency by increasing sophistication. Small firms have smaller amounts of 

Table 4—Explaining Variation in Realized Profits during the Outage Period

Realized profits

(1) (2) (3)

Profits under cognitive hierarchy 0.703 0.642
(0.136) (0.211)

Profits under best-response 0.263 0.061
(0.052) (0.091)

Constant −64.484 −248.599 −264.619
(156.308) (101.941) (97.348)

Observations 426 426 426
​​R​​ 2​​ 0.25 0.56 0.57

Notes: In all columns, the dependent variable is profits from the firms’ actual bids. The covariates are firm profits as 
predicted by the Cognitive Hierarchy model (column 1), firm profits that would be achieved from a model of uni-
lateral best-response to actual rival bids (column 2), and both (column 3). Predicted profits under CH are based on 
a sample of auctions that excludes the period of the nuclear outage. Standard errors clustered at the firm level are 
reported in parentheses. 
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generation capacity to offer into the market, but it is the small firms that we find are 
bidding with the least sophistication (i.e., “too steep”).

Table 5 presents results using the ​Size​ parameterization of ​​τ​i​​​.28 The first row 
reports estimated changes in total market production costs when the smallest six 
firms are given the sophistication level of the median-sized firm. When the increase 
in sophistication is publicly observed so that own-firm and rival firm bids adjust, 
production costs fall by 6.95 percent during periods of positive balancing demand. 
Most of the impact occurs through the channel of changing the firm’s own bids: 
the production costs fall by 6.22 percent when rivals do not react to the change in 
sophistication. In the second row, we model the impact of increasing the sophisti-
cation of all firms that are larger than the median-sized firm to the sophistication 
level of the largest firm. Production costs fall by 2.71 percent, which is less than 
half of the efficiency improvement of increasing sophistication of the smaller firms. 
Finally, in the third row we focus on the three smallest firms and find that much of 
the room for efficiency improvements lies in increasing sophistication of very small 
firms. Although the small firms have less generation capacity to add to the market, 
the largest scope for efficiency improvement lies in the small firms that withhold so 
much capacity due to low sophistication. Finally, the two last columns of Table 5 
show that during hours with negative balancing demand (DEC hours), the efficiency 
effects are even larger.

Finally, we estimate that there are diminishing marginal private returns to increases 
in sophistication. As shown in online Appendix L, when firms exogenously increase 
sophistication to the level of larger firms (but maintain their existing production 
capacity), the average increases in profits diminish with size.

B. Mergers

We now turn to studying how mergers affect efficiency. As mentioned above, 
we focus on potential mergers that do not generate cost synergies but do increase 

28 Estimates using the ​​Size​​ 2​​ parameterization are quite similar.

Table 5—Exogenous Increase in Sophistication: Change in Production Costs

INC side (%) DEC side (%)
Counterfactual Public Private Public Private

Small firms to median −6.95 −6.22 −18.4 −17.6
Above median firms to highest −2.71 −1.96 −13.42 −12.46
Three smallest to median −4.67 −3.75 −14.24 −13.64

Notes: This table reports the changes in total production costs when different subsets of firms are modeled to increase 
sophistication (​​τ​i​​​). These counterfactual calculations use parameter estimates from the first specification in Table 1. 
Small firms to median simulates production when the smallest six firms are given the sophistication level of the 
median firm. Above median firms to highest simulates production when all firms above the median-sized firm are 
given the sophistication of the largest firm. Three smallest to median simulates production when the three smallest 
firms are given the sophistication level of the median firm. Counterfactuals are calculated separately for auctions 
with positive balancing demand (INC side) and negative balancing demand (DEC side). Public indicates that the 
change in sophistication is observed by rival firms so that rival bids change due to increases in sophistication. Private 
indicates that the change in sophistication is not observed by rivals so that only the bids of the treated firms change.



4340 THE AMERICAN ECONOMIC REVIEW DECEMBER 2019

concentration. Specifically we imagine a merger that changes the bidding into the 
balancing market but does not change any other decisions of the merging firms, 
such as forward contracting decisions or day-ahead schedules. In reality, a complete 
merger of power marketing operations, including forward contracting, could change 
the positions at which bidders find themselves when balancing market bidding takes 
place. We are not in a position to simulate counterfactuals for full power marketing 
integration.29 However, we can simulate the effect of a merger of balancing mar-
ket bidding operations in order to illustrate the impact of increasing sophistication 
on the balancing market. In our merger simulations, the merging firm takes on the 
sophistication level of the most sophisticated firm (i.e., the larger firm) of the merg-
ing insiders.30

In this context, mergers have countervailing effects on efficiency. Mergers that 
increase sophistication of one of the merging firms increase efficiency through the 
same channels as the counterfactuals studied above. This reallocates production 
from high-cost, high-type firms to low-cost, low-type firms that have previously 
priced themselves out of the market. However, mergers create a countervailing 
effect: increasing market concentration will create additional market power that 
leads to higher production costs.

Our simulations show that mergers that increase sophistication can increase 
efficiency as long as the merging firms are not too large. The first row of Table 6 
shows that a merger between the smallest and largest firms reduces production costs, 
despite the increase in concentration. However, for mergers involving medium-sized 
and larger firms, the market power effect dominates and mergers increase produc-
tion costs.

IX.  Conclusions

Models of strategic equilibrium form the foundation of many studies in Industrial 
Organization that investigate market efficiency in oligopoly settings. However, there 
is some evidence suggesting that the application of such strategic equilibrium mod-
els to all settings has to be done with caution: in some settings observed behavior 
may depart significantly and persistently from what equilibrium models predict. 
These departures from Nash equilibrium behavior may have significant implications 
for efficiency.

We study bidding in the Texas electricity market where bidding by some firms 
departs significantly from what Nash-type models predict while bidding by other 
firms closely resembles these predictions. We use this setting, as well as unique data 

29 Several factors prevent us from modeling the impact of mergers on both the forward contract market and the 
balancing market simultaneously. First, contracted quantities correspond to a mixture of long- and medium-term 
contracts that are signed in advance of the balancing auction and often refer to blocks of hours over periods involv-
ing days or weeks. Thus, contract positions are unlikely to be chosen in order to enter a specific balancing auction 
with a strategically chosen contract position. Second, from a practical perspective, forward bilateral contracts are 
proprietary data. However, firms often treat the two markets as separate with separate trading desks for long-term 
and balancing operations. Finally, considering the two markets as related necessarily means that the game to be 
modeled involves trading over long- and short-term contracts for power across multiple hours. Modeling this 
broader “super game” is beyond the scope of this paper.

30 One could also assign the merging insiders the sophistication associated with the merged firm. However, the 
two assignment rules lead to very similar beliefs as long as one of the merging firms is small.
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on bids and marginal costs, to embed a cognitive hierarchy model into a structural 
model of bidding. We estimate heterogeneity in levels of strategic sophistication 
across firms. We find that while small firms behave as if they are boundedly rational 
in a cognitive hierarchy sense, large firms behave closely to what a Bayesian Nash 
model would predict. We then use the estimated levels of strategic sophistication 
to study how increasing the sophistication of low-type firms, either exogenously or 
through mergers with higher-type firms, may affect efficiency. Our results show that 
not only can exogenously increasing sophistication increase efficiency significantly, 
but that mergers that do not generate cost synergies but increase concentration may 
also increase efficiency.
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